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Shape memory materials

2

What Is Shape Memory?
(N. Seema,2018)

External stimuli

Self-expanding stents based on shape 
memory alloys and shape memory 
polymers (M. Ali,2020)
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Waste from pineapple leaves
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Products per year

> 1.5 million tons

• During harvesting and manufacturing, pineapple leaves 
are discarded.

• However, pineapple leaf is an abundantly available 
potential source of cellulose.

Thailand's Pineapple Situation: 2021 Outlook
(GCF International,2021)
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Research paper
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Liu, Y., Li, Y., Chen, H., Yang, G., Zheng, X., & Zhou, S. (2014). Water-induced shape-memory 
poly(d,l-lactide)/ microcrystalline cellulose composites. Carbohydrate Polymers, 104, 101–108.

From mechanisms of 
shape memory materials

CMC : Can be synthesized from abundant 

pineapple leaves.

PEG : Be a cross linkage agent that can improve 

water absorption

CA : Reduce overmuch water absorption.
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Objective
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To synthesize water-induced cellulose-based shape  memory materials 
from pineapple leaves with the best proportion of CMC : PEG : CA

-

Pineapple leaves waste Shape memory material

(IJB_INNSPUB, 2019: Online)
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Methodology
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Part I : Preparation of cellulose from pineapple leaves

Part II : Synthesis of shape memory materials

Part III: Shape recovery behavior of materials
and physical properties test 
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Part I : Preparation of cellulose from pineapple leaves

Pineapple leaves preparation

Wash and cut 
pineapple leaves into 

small pieces

Pineapple leaves 
waste

Dry in a hot air oven 
60ºC 4 hours

Dried pineapple
leaves

7
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Part I : Preparation of cellulose from pineapple leaves

Alkali treatment for isolation cellulose
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Prepare mixture of 
pineapple leaves and 

reagents 

Heat the mixture 
70ºC 4 hours

Dried pineapple leaves
50 g.

NaOH 14 g

Na2SO4.10H2O 14 g

DI water 400 mL.

thermometer

Filtrate reacted 
pineapple leaves with 

vacuum filter
& 

wash with DI water 

Dry in a hot air oven 
60ºC 10 hours
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Part I : Preparation of cellulose from pineapple leaves

Bleaching cellulose

9

Prepare mixture of 
pineapple leaves and 

reagents 

Heat the mixture 
80ºC 3 hours

Dried pineapple leaves
50 g.

NaClO2 70 ml

CH3COOH  5 ml

DI water 650 ml.

thermometer

Filtrate bleached 
cellulose with 
vacuum filter

& 
wash with DI water 

Dry in a hot air oven 
60ºC 10 hours

Cellulose
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Part I : Preparation of cellulose from pineapple leaves

CMC preparation from cellulose

10

Filtrate large solids 
from mixtures and fine 

sediments
Prepare mixture of 
bleached pineapple 
leaves and reagents 

Shake on a shaker 
30 minutes

Bleached pineapple leaves
12 g.

Ethanol 350 ml

NaOH  4 g

DI water 40 ml.

Heat the mixture 
70ºC 3 hours

thermometer
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Part I : Preparation of cellulose from pineapple leaves

CMC preparation from cellulose

11

Filtrate the CMC 
sediments with a 

vacuum filter
& 

wash with DI water

Dry in a hot air oven 
60ºC 10 hours

Carboxymethyl
Cellulose

(CMC) 
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Carboxymethyl cellulose (CMC)

Part I : Preparation of cellulose from pineapple leaves
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Characterization by FTIR

CMC

Our CMC 
sample

4000 3645 3290 2935 2580 2225 1870 1515 1160 805 450

100

100

Wavenumber (cm-1)

Transmittance (%)

O-H stretching

sp3 C-H stretching
C=O stretching

C-O stretching
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Part II : Synthesis of shape memory materials
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+

CMC

PEG

DI water 200 ml.

CMC

PEG

Mix CMC and PEG in 
different proportions

Sonicate in an 
ultrasonic bath 
45-60 minutes
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Part II : Synthesis of shape memory materials
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CA

Add citric acid and 
stir continuously

15 minutes

+ Pour solutions equally 
volume into petri dish 

Dry materials in hot air 
oven 60ºC 24 hours

sample CMC PEG CA

1 100 0 0

2 90 10 0

3 80 20 0

4 70 30 0

5 90 0 10

6 80 10 10

7 70 20 10

8 60 30 10

9 80 0 20

10 70 10 20

11 60 20 20

12 50 30 20

The proportions of materials in each sample (%w/w)
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Part III: Shape recovery behavior of materials test
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Fold the materials up 
in the half 

Take videos material 
deformation in water 

by a camera
&

Weigh its mass and 
measure its volume

Cut the materials with 
5 mm. x 30 mm.

&
Weigh its mass and 
measure its volume
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Part III: Tensile modulus and elongation at break test
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Use Universal testing machine (UTM) 
to test the 12 different ratios of materials.
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by FTIRMaterials characterization

O-H stretching C=O stretchingsp3 C-H stretching

100 %w/w CMC concentration

90:10:0

90:0:10

90 %w/w CMC concentration

100:0:0

80:20:0

80:10:10

80:0:20

80 %w/w CMC concentration

C-O stretching
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by FTIRMaterials characterization

70:30:0

70:20:10

70:10:20

70 %w/w CMC concentration

60:30:10

60:20:20

60 %w/w CMC concentration

50 %w/w CMC concentration

50:30:20
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Stress-Strain

Physical properties of materials
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Effect of PEG 

Physical properties of materials
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Effect of CA 

Physical properties of materials
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%Water absorption

22

0

200

400

600

800

1000

1200

1400

0 10 20 30

%
w

a
te

r 
a

b
s
o

rp
tio

n

%PEG w/w

%water absorption of materials in different %PEG

0% CA 10% CA 20% CA

0

200

400

600

800

1000

1200

1400

0 10 20

%
w

a
te

r 
a
b
s
o
rp

tio
n

%CA w/w

%water absorption of materials in different %CA

0% PEG 10% PEG 20% PEG 30% PEG

% ����� ���������� =  
�����

��
 �100%



%Swelling
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Shape recovery of materials
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0 s 3 s

The picture example of experiment

�� =
�� − ��

180� − ��
�100%

�� is the initial angle
�� is the final angle
�� is the percentage of shape recovery
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Results : Shape recovery behavior

%Recovery rate at 0%w/w 
CA concentration
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Results : Shape recovery behavior

%Recovery rate at 10%w/w 
CA concentration
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Results : Shape recovery behavior

%Recovery rate at 20%w/w 
CA concentration
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Conclusion

- The best ratio of CMC:PEG:CA is 80:10:10 with the recovery rate 84.84% in 6 seconds.

- CA has the ability to decrease water absorption and swelling of the materials, but PEG has only 

the ability to increase water absorption.

- CA improves tensile modulus, but decrease elongation at break of the materials. In contrast, PEG 

increases elongation at break of the materials ,but it don’t have predictable trends of tensile modulus.
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