

Synthesis of Water-induced Cellulose-based Shape Memory Material from Pineapple Leaves

Sirintronsopon, Chanatpakorn

1

Phutthong, Mahasamuth

Limsuchat, Puripong

^{Advisor} Rodpun, Kiattipoom, Ph.D.

Mahidol Wittayanusorn School, THAILAND

Shape memory materials

What Is Shape Memory? (N. Seema,2018) **Compressed stent**

Self-expanding stents based on shape memory alloys and shape memory polymers (M. Ali,2020)

Waste from pineapple leaves

Thailand's Pineapple Situation: 2021 Outlook (GCF International, 2021)

- During harvesting and manufacturing, pineapple leaves are discarded.
- However, pineapple leaf is an abundantly available potential source of cellulose.

Products per year > 1.5 million tons

Research paper

4

From mechanisms of shape memory materials

- CMC : Can be synthesized from abundant pineapple leaves.
- PEG : Be a cross linkage agent that can improve water absorption
- CA : Reduce overmuch water absorption.

Liu, Y., Li, Y., Chen, H., Yang, G., Zheng, X., & Zhou, S. (2014). Water-induced shape-memory poly(d,l-lactide)/ microcrystalline cellulose composites. Carbohydrate Polymers, 104, 101–108.

Objective

- To synthesize water-induced cellulose-based shape memory materials from pineapple leaves with the best proportion of CMC : PEG : CA

Part I: Preparation of cellulose from pineapple leaves **Part II : Synthesis of shape memory materials** Part III: Shape recovery behavior of materials and physical properties test

Pineapple leaves preparation

Alkali treatment for isolation cellulose

CMC preparation from cellulose

(CMC)

CMC preparation from cellulose

vacuum filter

& wash with DI water

Carboxymethyl cellulose (CMC) Characterization by FTIR

Part II : Synthesis of shape memory materials

Part II : Synthesis of shape memory materials

The proportions of materials in each sample (%w/w)

Part III: Shape recovery behavior of materials test

Part III: Tensile modulus and elongation at break test

Use Universal testing machine (UTM) to test the 12 different ratios of materials.

Materials characterization by FTIR

Materials characterization by FTIR

Physical properties of materials

Stress-Strain

Physical properties of materials

Effect of PEG

Physical properties of materials

Effect of CA

Tensile modulus of the materials in different %CA

%Water absorption

%Swelling

Shape recovery of materials

The picture example of experiment

 $R_r = \left(\frac{\theta_f - \theta_i}{180^0 - \theta_i}\right) x 100\%$

 θ_i is the initial angle θ_f is the final angle R_r is the percentage of shape recovery

Results : Shape recovery behavior

Results : Shape recovery behavior

Results : Shape recovery behavior

Conclusion

- The best ratio of CMC:PEG:CA is 80:10:10 with the recovery rate 84.84% in 6 seconds.
- CA has the ability to decrease water absorption and swelling of the materials, but PEG has only the ability to increase water absorption.
- CA improves tensile modulus, but decrease elongation at break of the materials. In contrast, PEG increases elongation at break of the materials ,but it don't have predictable trends of tensile modulus.

Reference

- Cheng, D., Wen, Y., Wang, L., An, X., Zhu, X., & Ni, Y. (2015). Adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals to improve its dispersity, *Carbohydrate Polymers*, *123*(1),157–163.
- Cuadro, P., Belt, T., Kontturi, K. S., Reza, M., Kontturi, E., Vuorinen, T., & Hughes, M. (2015). Cross-linking of cellulose and poly(ethylene glycol) with citric acid, *Reactive & Functional Polymers*, *90*(3), 21–24.
- Kassim, N. A., Mohamed, A. Z., Zainudin, E. S., Zakaria, S., Azman S. K. Z., & Abdullah, H. H. (2019). Isolation and Characterization of Macerated Cellulose from Pineapple Leaf. *BioResources*, *14*(1), 1198-1209.
- Li, X., Liu, T., Wang, Y., Pan, Y., Zheng, Z., Ding, X., & Peng, Y. (2014). Shape memory behavior and mechanism of poly(methyl methacrylate) polymer networks in the presence of star poly(ethylene glycol), *RSC Advances*, *4*(37), 19273–19282.
- Liu, Y., Li, Y., Chen, H., Yang, G., Zheng, X., & Zhou, S. (2014). Water-induced shape-memory poly(d,I-lactide)/microcrystalline cellulose composites. *Carbohydrate Polymers, 104*, 101–108.
- Liu, Y., Li Y., Yang, G., Zheng, X., & Zhou, S. (2015). Multi-stimulusresponsive shape-memory polymer nanocomposite network crosslinked by cellulose nanocrystals. *ACS Applied Materials & Interfaces, 7*(7), 4118-4126.
- Song, L., Li, Y., Xiong, Z., Pan, L., Iuo, Q., Xu, X., & Lu, S. (2018). Water-Induced shape memory effect of nanocellulose papers from sisal cellulose nanofibers with graphene oxide. *Carbohydrate Polymers, 179*(1), 110-117.
- Yakacki, C. M., Shandas, R., Lanning, C., Rech, B., Eckstein, A., & Gall, K. (2007). Unconstrained Recovery Characterization of Shape-Memory Polymer Networks for Cardiovascular Applications. *Biomaterials, 28*(14), 2255-2263.

THANK YOU