

Deep Transfer Learning-based Hit Compound Classification

for Therapeutic Targets in Heart Failure Drug Discovery on Small Datasets

Parajaree Ungudonpakdee, Thanasan Kumdee

11th grade, Kamnoetvidya Science Academy, Rayong, Thailand Scientific advisor 1: Thanasan Nilsu, Department of Biology and Environmental Science, Kamnoetvidya Science Academy (KVIS), Academic Teacher, Ph.D. (Applied Biological Sciences: Environmental Health) Scientific advisor 2: Bundit Boonyarit, School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC), Ph.D. student, Master of Science (Biochemistry)

INTRODUCTION

HEART FAILURE

108 BILLION

US dollars

One of the biggest death contributor & huge economic burden

INTRODUCTION

Abnormal cardiac muscle function

Not enough O₂ for body Compensatory Mechanism

Worsen Heart Failure

INTRODUCTION

The Process of Drug Discovery

The Process of Drug Discovery

Machine Learning Model

OBJECTIVE

"To construct a deep transfer learning model which classifies active compound for specific receptor targets "

give rise to

Compound Type

Chemical Structure

Classification based on Bioactivity Value

Chemical Structure

Compound Type

Trained Machine Learning Model

Active or Inactive Compound

Trained Machine Learning Model

OBJECTIVE

ASSITS PHARMACEUTICAL INDUSTRY **REDUCE THE NUMBER OF HEART FAILURE PATIENTS**

I. DATA PREPARATION

II. FEATURE EXTRACTION

METHODOLOGY

III. MODEL TRAINING

IV. PERFORMANCE EVALUATION

METHODOLOGY

I. DATA PREPARATION

FOCUSED RECEPTOR TARGETS	PRESENT NEGATIVE INOTROPES
Beta 1 Adrenergic receptor(ADBR1)	Beta blockers
Antiogensin-Converting enzyme(ACE)	ACE inhibitors
Mineralcorticoid receptor(MCR)	Diuretics

Table 1: Focused receptor targets and present negative inotropes

CN1CCC[C@H]1c2cccnc2

SMILES Simplified Molecular – Input Line Entry System

Compound Dataset

pX value

pX Bioactivity Datapoints

INPUT

CN1CCC[C@H]1c2cccnc2

SMILES Simplified Molecular – Input Line Entry System

COMPOUND CLASSIFICATION

METHODOLOGY

II. FEATURE EXTRACTION

METHODOLOGY II. FEATURE EXTRACTION

Diagram 1: FP2VEC technique

METHODOLOGY

III. MODEL TRAINING

METHODOLOGY III. MODEL TRAINIG

Diagram 2: Model architecture

METHODOLOGY III. MODEL TRAINIG

N=1000nM dataset

N=500nM dataset

N=300nM dataset

N=100nM dataset

Hyperparameter Tuning with hyperparameters:

Embedding vector (k): 50, 100, 150 Window size of filter (h): 3, 4, 5 Feature map size (n): 256, 512, 1024

Training

METHODOLOGY III. MODEL TRAINIG

81/100	9/100	1/100
Train	Validation	Test
dataset	dataset	dataset
Train	Calculate	Evaluate
model	loss	model

METHODOLOGY

IV. PERFORMANCE EVALUATION

METHODOLOGY IV.PERFORMANCE EVALUATION

ROC-AUC scores (Area under the receiver operating characteristic curve scores)

X (nM)	Target Protein Family	AUC	Average AUC
	GPCR Subfamily A3	0.940	
1000	Nuclear Receptor Subfamily 3	0.853	0.858
	GPCR Subfamily A17	0.780	
500	GPCR Subfamily A3	0.899	
	Nuclear Receptor Subfamily 3	0.859	0.838
	GPCR Subfamily A17	0.756	
300	GPCR Subfamily A3	0.890	
	Nuclear Receptor Subfamily 3	0.840	0.825
	GPCR Subfamily A17	0.745	
100	GPCR Subfamily A3	0.911	
	Nuclear Receptor Subfamily 3	0.859	0.847
	GPCR Subfamily A17	0.771	

Efficiency of multi-task model at k= 50, h = 5, n = 1024

X (nM)	Target Protein Family	Multi-Task		Single Task	
		AUC	Average AUC	AUC	Average AUC
1000	GPCR Subfamily A3	0.940		0.923	
	Nuclear Receptor Subfamily 3	0.853	0.858	0.824	0.849
	GPCR Subfamily A17	0.780		0.802	
500	GPCR Subfamily A3	0.899		0.878	
	Nuclear Receptor Subfamily 3	0.859	0.838	0.829	0.819
	GPCR Subfamily A17	0.756		0.751	
300	GPCR Subfamily A3	0.890		0.846	
	Nuclear Receptor Subfamily 3	0.840	0.825	0.832	0.815
	GPCR Subfamily A17	0.745		0.767	
100	GPCR Subfamily A3	0.911		0.884	
	Nuclear Receptor Subfamily 3	0.859	0.847	0.803	0.818
	GPCR Subfamily A17	0.771		0.767	

Efficiency of multi-task & single task model at k= 50, h = 5, n = 1024

Comparison of Logarithm Loss for Each Task of

Multi-task Model (Above) & Single Task Model (Below)

Best hyperparameters

- Embedding vector (k): 50
- Window size of filter (h): 5
- Feature map size (n): 1024

Best bioactivity criteria - X = 1000 nM

Result AUC score

- GPCR Subfamily A3 : 0.940
- Nuclear Receptor Subfamily 3 : 0.853
- GPCR Subfamily A17 : 0.780

FUTURE PLANS

Thank You!