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Table 1: Focused receptor targets and present negative inotropes
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Simplified Molecular — Input Line Entry System
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I. DATA PREPARATION

pPX >=pN
— Active Compound

Classification Criteria
pX value pN = -log(N)

DX By using N:
: - : 1000 nM, 500 nM,
Bloactivity Datapoints 300 nM, 100 nM

—— Inactive Compound
PX < pN

COMPOUND CLASSIFICATION
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II. FEATURE EXTRACTION
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Fingerprint Embedding

Diagram 1: FP2VEC technique
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III. MODEL TRAINIG
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TARGET MODEL
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Diagram 2: Model architecture
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ROC-AUC scores

(Area under the receiver operating characteristic curve scores)

ROC Curve
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X (nM) Target Protein Family AUC Average AUC
GPCR Subfamily A3
Nuclear Receptor Subfamily 3
GPCR Subfamily A17
GPCR. Subfamily A3 0.899
500 Nuclear Receptor Subfamily 3 0.859 0.838
GPCR Subfamily A17 0.756
GPCR. Subfamily A3 0.890
300 Nuclear Receptor Subfamily 3 0.840 0.825
GPCR Subfamily A17 0.745
GPCR Subfamily A3 0.911
100 Nuclear Receptor Subfamily 3 0.859 0.847
GPCR Subfamily A17 0.771

Efficiency of multi-task model at k=50, h =5, n=1024



Multi-Task Single Task

X (n Target Protein Family ] Average Average

(nM) s : avc  IUSY ave U
GPCR Subfamily A3 0.940 0.923

1000 Nuclear Receptor Subfamily 3 0.853  0.858 0.824 0.849
GPCR Subfamily A17 0.780 0.802
GPCR Subfamily A3 0.899 0.878

500 Nuclear Receptor Subfamily 3 0.859 0.838 0.829 0.819
GPCR Subfamily A17 0.756 0.751
GPCR Subfamily A3 0.890 0.846

300 Nuclear Receptor Subfamily 3 0.840  0.825 0.832 0.815
GPCR Subfamily A17 0.745 0.767
GPCR Subfamily A3 0.911 0.884

100 Nuclear Receptor Subfamily 3 0.859  0.847 0.803 0.818
GPCR Subfamily A17 0.771 0.767

Efficiency of multi-task & single task model at k=50, h=5,n=1024



Multi Task GPCR Subfamily A3
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RESULTS & DISCUSSION

Best bioactivity criteria

Best hyperparameters

Result AUC score




Weight transfer for Accuracy
target model evaluation

Target model ; Architecture
training = improvement
L:: P
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