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I. Matrix-Tree Theorems.

Let G = (V,E) be a finite graph which may contain loops or multiple
edges, with |V | = n vertices and |E| = m edges. We denote by κ(G)
the number of spanning trees of G, sometimes called the complexity of
G. In this section we derive an easily computable formula for κ(G),
and similar formulas for related generating series.

If G is not connected then κ(G) = 0, so we can assume that G
is connected from now on. If G′ is obtained from G by removing all
the loops of G, then κ(G′) = κ(G), since a loop can never occur in a
spanning tree. Thus, we may assume that G contains no loops as well.
Multiple edges, however, do remain a possibility.

The quantity κ(G) can be computed recursively, using the formula

κ(G) = κ(Gr e) + κ(G/e),

in which G r e is the graph obtained from G by deleting the edge e
and G/e is the graph obtained from G by contracting the edge e (and
removing any loops produced). [Proof of this formula is a simple case
analysis: κ(Gr e) counts the spanning trees of G that do not contain
the edge e, and κ(G/e) counts the spanning trees of G that do contain
the edge e.] Furthermore, if G and H are connected graphs which
intersect in exactly one vertex (and no edges) then

κ(G ∪H) = κ(G) · κ(H),

as is also easily seen. See Figure 1 for an example computation us-
ing this method. (For each graph in the figure, an edge which is
deleted/contracted is marked with an asterisk.)

This recursion shows that the function κ is recursively enumerable,
but the resulting algorithm in general requires on the order of 2|E| arith-
metic operations, and so it is not suitable for large computations.

Fortunately, there is an easily computable and completely general
formula for κ(G), which we now derive. To state the formula we need
to define some matrices. The adjacency matrix of G is the square
matrix A = A(G) indexed by V × V , which has as its entries: Avv = 0
for all v ∈ V , and if v 6= w in V then Avw is the number of edges of
G which have vertices v and w at their ends. The degree degG(v) of a
vertex v ∈ V of G is the number of edges of G which are incident with
v. The degree matrix of G is the diagonal V -by-V matrix ∆ = ∆(G)
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Figure 1. Computing κ(G) by deletion/contraction.

Figure 2

such that ∆vv = degG(v) for all v ∈ V , and ∆vw = 0 if v 6= w. Finally,
the Laplacian matrix of G is defined to be L(G) = ∆(G)− A(G).

For example, the Laplacian matrix of the graph pictured in Figure
2 is 

3 −1 −1 0 −1
−1 3 −1 0 −1
−1 −1 3 −1 0

0 0 −1 3 −2
−1 −1 0 −2 4


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One more piece of notation is required. If M is a matrix and i is a
row–index for M and j is a column–index for M , let M(i|j) denote the
submatrix of M obtained by deleting row i and column j from M .

Theorem 1 (The Matrix-Tree Theorem). Let G = (V,E) be a graph,
and let L = L(G) be the Laplacian matrix of G. Then for any v ∈ V ,

κ(G) = detL(v|v).

Note that this determinant can be evaluated using a number of arith-
metic operations that is bounded by a polynomial in |V | (in fact, by
O(|V |2.54), I think). The Laplacian matrix L(G) is also easy to con-
struct from G. Thus, the Matrix-Tree Theorem is much more effective
than the deletion/contraction recursion for computing κ(G).

One could prove Theorem 1 by induction on the number of edges, by
showing that the right-hand side of the formula satisfies the same dele-
tion/contraction recursion as does κ(G). The initial conditions forming
the base case of the induction are easily checked. However, there is a
more informative proof which also yields various generalizations of this
Matrix-Tree Theorem.

We begin by expressing the Laplacian matrix of a graph in a different
form. Consider a graph G = (V,E), and orient each edge of G arbi-
trarily by putting an arrow on it pointing towards one of its two ends.
The signed incidence matrix of G (with respect to this orientation) is
the V -by-E indexed matrix D with entries

Dve =

 +1 if e points in to v but not out,
−1 if e points out of v but not in,

0 otherwise.

Figure 3 shows the graph of Figure 2 with the edges oriented arbitrarily
and labelled with the letters from a to h. Relative to this orientation
the signed incidence matrix of the graph is

−1 1 −1 0 0 0 0 0
1 0 0 −1 −1 0 0 0
0 0 1 0 1 0 1 0
0 0 0 0 0 −1 −1 1
0 −1 0 1 0 1 0 −1


(The rows are indexed by 1...5 and the columns by a...h.)

For any matrix M we denote the conjugate transpose of M by M †.

Lemma 2. Let G = (V,E) be a graph, orient G arbitrarily, and let D
be the corresponding signed incidence matrix. Then DD† = L(G).
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Figure 3

Proof. Exercise! �

Now the evaluation of detL(v|v) proceeds in two steps: first we find
the combinatorial meaning of all the subdeterminants of the signed
incidence matrix D, and then we feed this information into a general
fact of linear algebra – the Binet-Cauchy Formula.

A little more notation is needed. Let M be a matrix, let I be a
set of row-indices of M , and let J be a set of column-indices of M .
Generalizing the above convention, we letM(I|J) denote the submatrix
of M obtained by deleting the rows in I and the columns in J from M .
Also, we let M [I|J ] denote the submatrix of M obtained by deleting
the rows not in I and the columns not in J from M . The other
two possibilities, M(I|J ] and M [I|J), are interpreted accordingly. In
particular, M(|J ] indicates that we use all rows of M but only the
columns of M in the set J .

(To follow the proof of Proposition 3 it might help to work through
some examples based on the graph of Figure 3 and the corresponding
signed incidence matrix.)

Proposition 3. Let G = (V,E) be a graph, orient G arbitrarily, and
let D be the corresponding signed incidence matrix. Let R ⊆ V and
S ⊆ E be such that |R| + |S| = |V |. Then D(R|S] is square, and
detD(R|S] = 0 unless F = (V, S) is a spanning forest of G in which
each component contains exactly one vertex in R. Moreover, if F is
such a forest then detD(R|S] = ±1.

Proof. Clearly D(R|S] is square, with |V |−|R| rows and |S| = |V |−|R|
columns.

First, assume that F = (V, S) contains a cycle C. Orient the edges
of C consistently in one of the two strongly connected orientations of
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C, and for each e ∈ E(C) let

εC(e) =

{
+1 if the orientations of e in C and G agree,
−1 if the orientations of e in C and G differ.

Then ∑
e∈E(C)

εC(e)D(|e] = 0,

the zero vector. Thus, the columns of D indexed by E(C) are lin-
early dependent. Since E(C) ⊆ S, the columns of D indexed by S
are linearly dependent. Therefore the columns of D(R|S] are linearly
dependent. Therefore detD(R|S] = 0.

Now assume that F = (V, S) is a spanning forest of G. If some
component T of F contains two distinct vertices r1, r2 ∈ R, then let P
be the (unique) directed path from r1 to r2 in T . For each e ∈ E(P )
let

εP (e) =

{
+1 if the orientations of e in P and G agree,
−1 if the orientations of e in P and G differ.

Then ∑
e∈E(P )

εP (e)D(r1r2|e] = 0,

the zero vector. Thus, the columns of D(r1r2|) indexed by E(P ) are
linearly dependent. Since E(P ) ⊆ S and {r1, r2} ⊆ R, the columns
of D(R|S] are linearly dependent. Therefore detD(R|S] = 0. Thus,
detD(R|S] = 0 unless each component of F contains at most one
vertex in R. But F is a forest with |V | vertices and |S| edges, so it has
|V | − |S| = |R| components. Thus, if each component of F contains at
most one vertex in R then each component of F contains exactly one
vertex in R.

Finally, let F = (V, S) be a spanning forest of G such that each
component of F contains exactly one vertex in R. Permuting the rows
and columns of D(R|S] as needed brings this matrix into the block
diagonal form

M1 ⊕M2 ⊕ · · · ⊕Mc.

Here, the components of F are T1, T2, ..., Tc, ri is the unique vertex
of R in V (Ti), and Mi is the signed incidence matrix of Ti with row ri

deleted. Since

detD(R|S] = ±
c∏

i=1

detMi

it suffices to prove the following:
CLAIM: Let T = (V,E) be a tree and let r ∈ V . Orient the edges of
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T arbitrarily, and let D be the corresponding signed incidence matrix
of T . Then detD(r|) = ±1.

This claim is proved by induction on n = |V |. The basis is n = 1,
since every tree has at least one vertex. In this case D(r|) is a 0-by-
0 matrix, so that detD(r|) = 1 (by the permutation expansion of a
determinant). For the induction step n ≥ 2, so that T has at least two
vertices of degree one – let v be a vertex of degree one in T other than
r. There is exactly one nonzero entry in row v of D(r|), corresponding
to the unique edge f of T that is incident with v, and this entry is ±1.
Evaluating detD(r|) by Laplace expansion along row v, we see that

detD(r|) = ± detD(rv|f)

Now D(rv|f) is the signed incidence matrix of Trv with row r deleted.
By induction, detD(rv|f) = ±1. This completes the induction step,
the proof of the claim, and the proof of the proposition. �

Let M be an r-by-m matrix, and let P be an m-by-r matrix. The
product MP is then a square r-by-r matrix, so its determinant is de-
fined. The Binet-Cauchy Formula expresses this determinant in terms
of the factors M and P . Since these are not necessarily square we can-
not take their determinants per se, so something a bit more complicated
is going on.

Theorem 4 (The Binet-Cauchy Formula). Let M be an r-by-m matrix,
and let P be an m-by-r matrix. Then

detMP =
∑

S

detM(|S] · detP [S|)

in which the sum is over all r-element subsets of the column indices of
M (which are the same as the row indices of P ).

(Proof of this theorem is deferred until the end of the section.)

Let T(G) denote the set of all spanning trees of G.

Proof of the Matrix-Tree Theorem. Let G = (V,E) be a graph with
|V | = n vertices and Laplacian matrix L. Orient the edges of G ar-
bitrarily and let D be the corresponding signed incidence matrix. Let
v ∈ V be any vertex. Noticing that L(v|v) = D(v|)D†(|v) (by Lemma
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2), we evaluate detL(v|v) using the Binet-Cauchy Formula:

detL(v|v) = detD(v|)D†(|v)
=

∑
S⊆E: |S|=n−1

detD(v|S] · detD†[S|v)

=
∑

S⊆E: |S|=n−1

| detD(v|S]|2

=
∑

S⊆E: (V,S)∈T(G)

1

= κ(G).

The second equality is by the Binet-Cauchy Formula, the third equality
follows since detM † = detM for any (complex) square matrix M , and
the fourth equality follows from Proposition 3. The fifth equality is the
definition of κ(G). �

The Matrix–Tree Theorem can be generalized from a conclusion
about the cardinality of the set of spanning trees of G = (V,E) to
a conclusion about the generating polynomial for this set. To define
this generating polynomial, let y = {ye : e ∈ E} be pairwise com-
muting algebraically independent indeterminates, and for S ⊆ E let
yS =

∏
e∈S ye. We may identify a spanning subgraph of G with its

edge-set, and define

T (G;y) =
∑

T∈T(G)

yT .

This polynomial T (G;y) is called the spanning-tree enumerator of G.

Theorem 5 (The Weighted Matrix-Tree Theorem). Let G = (V,E)
be a graph, orient G arbitrarily, and let D be the corresponding signed
incidence matrix. Let Y = diag(ye : e ∈ E) be the E-by-E diagonal
matrix of indeterminates y. Then, for any v ∈ V ,

T (G;y) = detD(v|)Y D†(|v).

Proof. Notice that for any subset S ⊆ E of size |S| = n− 1,

det(DY )(v|S] = detD(v|S] · yS.
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Having made this observation, we can copy the proof of Theorem 1
almost verbatim:

detD(v|)Y D†(|v)
= det

[
(DY )(v|)D†(|v)

]
=

∑
S⊆E: |S|=n−1

detD(v|S] · yS · detD†[S|v)

=
∑

S⊆E: |S|=n−1

| detD(v|S]|2 · yS

=
∑

S⊆E: (V,S)∈T(G)

yS

= T (G;y).

�

The matrix L(G;y) = DYD† is the weighted Laplacian matrix of
G. (As in Lemma 2, this does not depend on the choice of orientation
used to define D.) This matrix will play a prominent role in the next
section. The Weighted Matrix-Tree Theorem can also be written

T (G;y) = detL(G;y)(v|v).

Theorem 6 (The Principal Minors Weighted Matrix-Tree Theorem).
Let G = (V,E) be a graph, and let L(G;y) be the weighted Laplacian
matrix of G. For any subset R ⊆ V of vertices,

detL(G;y)(R|R) =
∑

F

yF ,

in which the sum is over all spanning forests F of G for which each
component of F contains exactly one vertex of R.

Proof. Exercise! �

Finally, all the minors of the weighted Laplacian matrix of G =
(V,E) can be interpreted combinatorially. There are some finicky plus
or minus signs that do not appear for the principal minors. To keep
track of these, let V = {1, 2, ..., n} and for R ⊆ V define

ε(R) =
∏
r∈R

(−1)r.

Let R,Q ⊆ V be such that |R| = |Q| = c, and sort the elements of these
subsets: R = {r1 < r2 < · · · < rc} and Q = {q1 < q2 < · · · < qc}. Let
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F be a spanning forest in G such that each component of F contains
exactly one vertex of R and exactly one vertex of Q. Thus, there is
a unique permutation σF : {1, 2, ..., c} → {1, 2, ..., c} such that ri and
qσF (i) belong to the same component of F , for all 1 ≤ i ≤ c. Define
ε(F ;R,Q) to be the sign of this permutation σF .

Theorem 7 (The All-Minors Weighted Matrix-Tree Theorem). Let
G = (V,E) be a graph with V = {1, 2, ..., n}, and let L(G;y) be the
weighted Laplacian matrix of G. For any subsets R,Q ⊆ V of vertices
with |R| = |Q|,

detL(G;y)(R|Q) = ε(R)ε(Q)
∑

F

ε(F ;R,Q)yF ,

in which the sum is over all spanning forests F of G for which each
component of F contains exactly one vertex of R and exactly one vertex
of Q.

The proof follows the above pattern – keeping track of the signs is the
only new difficulty. There is also a more general version of this theorem
for directed graphs. See the paper by Chaiken [5].

We conclude this section with a proof of the Binet-Cauchy Formula.

Proof of the Binet-Cauchy Formula. We proceed by induction on r. For
the basis of induction, r = 1, M is a row vector and P is a column
vector of length m. The result follows immediately in this case from
the definition of matrix product. For the induction step, assume that
the result is true with r − 1 in place of r.

Consider the Laplace expansion of detMP along row i, for some
1 ≤ i ≤ n. That is,

detMP =
r∑

j=1

(−1)i+j(MP )ij det(MP )(i|j)

We average these among all 1 ≤ i ≤ r to obtain

detMP =
1

r

r∑
i=1

r∑
j=1

(−1)i+j(MP )ij det(MP )(i|j)

=
1

r

r∑
i=1

r∑
j=1

(−1)i+j

(
m∑

k=1

MikPkj

)
detM(i|)P (|j)

=
1

r

r∑
i=1

r∑
j=1

(−1)i+j

(
m∑

k=1

MikPkj

)∑
U

detM(i|U ] · detP [U |j).
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In the second of these equalities we use the fact that (MP )(i|j) =
M(i|)P (|j), and in the third we use the induction hypothesis. The
final summation is over all (r − 1)-element subsets U of the column
indices of M .

Continuing with the calculation, we have

detMP

=
1

r

∑
U

m∑
k=1

(
r∑

i=1

(−1)i+kMik detM(i|U ]

)(
r∑

j=1

(−1)k+jPkj detP [U |j)

)

=
1

r

∑
U

m∑
k=1

(−1)r+k detM(|U, k] · (−1)r+k detP [U, k|)

In the last of these lines, M(|U, k] is the matrix obtained from M(|U ]
by adjoining the column M(|k] on the right side. Laplace expansion
along the last column shows that

(−1)r+k detM(|U, k] =
r∑

i=1

(−1)i+kMik detM(i|U ].

Similarly, P [U, k|) is the matrix obtained from P [U |) by adjoining the
row P [k|) on the bottom. Laplace expansion along the last row shows
that

(−1)r+k detP [U, k|) =
r∑

j=1

(−1)k+jPkj detP [U |j).

Of course, if k ∈ U then the matrix M(|U, k] has two equal columns,
so that det(M(|U, k)] = 0. Thus, in the two outer summations we may
restrict attention to pairs (U, k) such that k 6∈ U . In effect, this sums
over all r-element subsets S = U ∪ {k} of the column indices of M
and counts each one r times. Since the number of column–exchanges
needed to obtain M(|S] from M(|U, k] is equal to the number of row–
exchanges needed to obtain P [S|) from P [U, k|), we see that

detM(|U, k] · det(P [U, k|) = detM(|S] · detP [S|).
Continuing with the calculation, we conclude that

detMP =
∑

S

det(M(|S]) · det(P [S|))

which completes the induction step, and the proof. �
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II. Kirchhoff’s Formula.

In 1847, Kirchhoff published a short paper [10] in which he gave a
formula for the effective conductance of linear resistive electrical net-
work. (An English translation was published by O’Toole [12] in 1958.)
I’ll give two proofs here. The first is essentially Kirchhoff’s, but the
exposition benefits from a modern perspective on linear algebra. The
second proof is more combinatorial, avoiding Cramer’s Rule and the
Matrix-Tree Theorems, although it, too, uses linear algebra (but in a
quite different way).

Let G = (V,E) be a finite, connected, undirected graph (which may
contain loops or multiple edges), which we think of as representing an
electrical network: the edges are wires and the vertices are junctions at
which the wires are connected with one another. Each edge e ∈ E is
assigned an electrical resistance re > 0, a positive real number. Given
two distinct vertices a, b ∈ V , we pass an electric current through the
graph G by attaching the vertices a and b to the poles of an exter-
nal current source. By measuring the difference in electric potential
between the vertices a and b we can then determine the effective resis-
tance of the network G between the terminals a and b, by Ohm’s Law.
The amazing thing is that the result of this calculation encodes a great
deal of combinatorial information about the graph G.

First of all, it turns out that the formula is more naturally expressed
in terms of conductance rather than resistance: conductance is merely
the reciprocal of resistance. Second, resistance and conductance are
conventionally real-valued quantities, but Kirchhoff’s formula remains
valid for quantities taken from any field. The field C(s) is particularly
important for LRC networks to which a time-varying source of current
is applied – the variable s is conjugate to the time variable by means
of Laplace transorm. In this case, the analogue of resistance is referred
to as impedance, and the analogue of conductance is referred to as
admittance.

The linear algebra involved in the proofs below does not depend on
the field of quantities used for the admittances of the edges. Accord-
ingly, for our purposes, an electrical network is a pair (G,y) in which
G = (V,E) is a graph as above, and y = {ye : e ∈ E} is a set of alge-
braically independent commuting indeterminates. In effect, we choose
to work over the field K = C(y) of rational functions in these indeter-
minates. (Your intuition will not lead you astray if you think of each
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ye as a positive real number, however.) The quantity ye is interpreted
as the admittance (or conductance) of the edge e.

In order to derive Kirchhoff’s Formula we need to specify the be-
haviour of an electrical network precisely. This is accomplished by
Ohm’s Law, Kirchhoff’s Current Law, and Kirchhoff’s Voltage Law.
All three are physically intuitive and we do not dwell on their justifi-
cations.

Ohm’s Law: In a wire e with ends v and w, the current je flow-
ing through e from v to w is directly proportional to the difference
in electric potential ϕ(v) − ϕ(w) between the ends. The constant
of proportionality is the admittance ye of the wire e. That is, je =
ye(ϕ(v)− ϕ(w)).

Kirchhoff’s Current Law: In an electrical network (G,y), at every
vertex v the amount of current flowing in equals the amount of current
flowing out.

Kirchhoff’s Voltage Law: In an electrical network (G,y), there is
a potential function ϕ : V → K such that Ohm’s Law is satisfied for
every wire e ∈ E, and such that the currents determined by Ohm’s
Law also satisfy Kirchhoff’s Current Law.

(Ohm’s Law and Kirchhoff’s Current Law specify the system of equa-
tions governing the currents and electrical potentials in the network.
Thus, logically speaking, they are the axioms or postulates of the the-
ory. Kirchhoff’s Voltage Law is of a different character – it is, in effect,
a lemma stating that this system of equations is consistent.)

To measure the effective admittance of an electrical network (G,y)
between the vertices a, b ∈ V we can do the following. Connect a
and b to an external source of current and force one ampere of current
through the network from b to a. Ground the vertex a so that its electric
potential is ϕ(a) = 0. The electric potential ϕ(b) is then inversely
proportional to the effective admittance of G, by Ohm’s Law. So a
calculation of this quantity

Yab(G;y) =
1

ϕ(b)

is what we seek. See Figure 4 for an illustration.
Finally, to express Kirchhoff’s Formula we recall the spanning-tree

enumerator of G. That is, for a graph G = (V,E) and indeterminates
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Figure 4. How to measure Yab(G;y).

y = {ye : e ∈ E} we defined

T (G;y) =
∑

T∈T(G)

yT ,

in which the sum is over the set T(G) of all spanning trees of G. One
more piece of notation is required: for a graph G = (V,E) and vertices
a, b ∈ V , we let G/ab denote the graph obtained by merging the two
vertices a and b together into a single vertex.

Theorem 8 (Kirchhoff’s Formula). Let (G,y) be an electrical network,
and let a, b ∈ V . The effective admittance between a and b in G is

Yab(G;y) =
T (G;y)

T (G/ab;y)
.

First Proof of Kirchhoff’s Formula. We begin by translating the phys-
ical “laws” above into linear algebra. To do this we fix an arbitrary
orientation of G = (V,E). (The choice of orientation does not affect
the final answer, but the orientation is needed in order to write down
the equations corresponding to Ohm’s Law.) Next we consider the V -
by-E incidence matrix D of G with respect to this orientation. Also,
let j = {je : e ∈ E} be the E-indexed column vector of currents, let
Y = diag(ye : e ∈ E) be the diagonal matrix of admittances, and
let ϕ = {ϕ(v) : v ∈ V } be the V -indexed column vector of voltages,
normalized so that ϕ(a) = 0. We may restate the physical “laws” as
follows:
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Ohm’s Law: j = −Y D†ϕ.
This is the statement of Ohm’s Law for every wire in the network si-
multaneously.

Kirchhoff’s Current Law: Dj = δa − δb.
Here δv is the V -indexed column vector given by

(δv)w =

{
1 if w = v,
0 if w 6= v.

The reason that the RHS is not zero is that one ampere of current
is being supplied to b externally and removed from a externally. The
currents internal to the network G must compensate for this external
driving current.

Kirchhoff’s Voltage Law: A solution ϕ to Ohm’s Law and Kirch-
hoff’s Current Law exists.

Combining these equations, our task is now to solve the system

DYD†ϕ = δb − δa

for ϕ. More precisely, we only need to determine the value ϕ(b). Every
column of D sums to zero, as does the RHS. Therefore, this system of
linear equations is redundant and we can strike out any one of them.
Since we have normalized ϕ(a) = 0, the a-th column of D† will not
contribute at all to the product D†ϕ. Thus, let Da = D(a|) be the
matrix obtained from D by deleting row a. We seek a solution to

DaY D
†
aϕ = δb,

in which ϕ and δb are now column vectors indexed by V r {a}.
Since we only want the value of ϕ(b), Cramer’s Rule is the perfect

technique to use. By Theorem 5,

det(DaY D
†
a) = T (G;y),

and this is nonzero for our (indeterminate) admittances y, so that the
system is invertible. Replacing column b of DaY D

†
a by δb, we obtain

a matrix M with Mbb = 1 being the only nonzero entry in column b.
The Laplace expansion of det(M) along column b then shows that

det(M) = det(D(ab|))Y D†(|ab)) = detL(ab|ab),

in which L = L(G;y) = DYD† is the weighted Laplacian matrix of G.
By Theorem 6 this determinant is the generating series for spanning
forests of G which have exactly two components, one containing a and
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one containing b. These forests of G correspond bijectively with span-
ning trees of G/ab, so that det(M) = T (G/ab;y). Cramer’s Rule thus
implies that

ϕ(b) =
T (G/ab;y)

T (G;y)
.

Since the effective admittance was defined to be Yab(G;y) = 1/ϕ(b),
this completes the proof. �

Second Proof of Kirchhoff’s Formula. Recall that K = C(y) is the field
of rational functions in the indeterminates y = {ye : e ∈ E} and that
T(G) is the set of spanning trees of G. Let KT(G) denote the vector
space over K which has as a basis {[T ] : T ∈ T(G)}. That is, a vector
in KT(G) is a formal linear combination∑

T∈T(G)

cT · [T ]

in which the coefficients cT are in K. The vector space KT(G/ab)
is defined similarly. We are going to define a linear transformation
Q : KT(G) → KT(G/ab), the properties of which will allow us to
prove Kirchhoff’s Formula. In order to define Q we fix an arbitrary
orientation for each edge e ∈ E, just as in the first proof. For each
e ∈ E, let head(e) denote the vertex into which e points, and let tail(e)
denote the vertex out of which e points.

It suffices to define the action of Q on each basis vector [T ] for
T ∈ T(G). In the spanning tree T of G, there is a unique directed path
P (T ) which begins at b and ends at a. For each edge e ∈ P (T ), say
that the sign of (T, e) is

ε(T, e) =

{
+1 if the orientations of e in P (T ) and G agree,
−1 if the orientations of e in P (T ) and G differ.

We define Q([T ]) by the formula

Q([T ]) =
∑

e∈P (T )

ε(T, e)je[T r e],

in which j = {je : e ∈ E} is the vector of currents as in the first
proof. Notice that as a set of edges, T r e is a spanning tree of G/ab
for every e ∈ P (T ). This action of Q is extended linearly to all vectors
in KT(G).

Now consider the vector g =
∑

T∈T(G)[T ] in KT(G) – that is, the

formal sum of all spanning trees of G. Then Q(g) is some vector in
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KT(G/ab), so that

Q(g) =
∑

Z∈T(G/ab)

cZ [Z]

for some coefficients cZ ∈ K. By the definition of Q, we see that

cZ =
∑

T∈T(G): Tre=Z

ε(T, e)je.

Regarding Z as a forest in G with two components A containing a and
B containing b, a spanning tree T ∈ T(G) is such that T r e = Z if
and only if T = Z ∪ {e} and e is an edge of G which has one end in A
and the other end in B. Let C(Z) be this set of edges of G, so that

cZ =
∑

e∈C(Z)

ε(Z ∪ {e}, e)je.

Notice that the signs ε(Z ∪ {e}, e) are such that this sum is the total
current flowing from B to A through the wires in the set C(Z). Ap-
plying Kirchhoff’s Current Law to every vertex of B, and remembering
that one ampere of current is entering b ∈ B from an external source,
we see that the total current flowing from B to A through C(Z) is also
one ampere. That is, cZ = 1 for every Z ∈ T(G/ab), so that

Q(g) =
∑

Z∈T(G/ab)

[Z].

This is an equation between vectors in the vector space KT(G/ab).
Next, we define a linear functional α : KT(G/ab) → K as follows: for

Z ∈ T(G/ab), let

α([Z]) = yZ

and extend this linearly to all of KT(G/ab). We examine the result
of applying this linear functional to both sides of the vector equation
derived in the previous paragraph. On the RHS we obtain

α

 ∑
Z∈T(G/ab)

[Z]

 =
∑

Z∈T(G/ab)

yZ = T (G/ab;y),

which is the spanning-tree enumerator of G/ab. For the LHS, let’s first
consider some T ∈ T(G) and compute α(Q([T ])). That is, using Ohm’s
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Law,

α(Q([T ])) =
∑

e∈P (T )

ε(T, e)jey
Tre

=
∑

e∈P (T )

ε(T, e)ye (ϕ(tail(e))− ϕ(head(e)))yTre

= yT
∑

e∈P (T )

ε(T, e) (ϕ(tail(e))− ϕ(head(e)))

= yT (ϕ(b)− ϕ(a)) = ϕ(b)yT ,

since ϕ(a) = 0. The penultimate equality follows because the signs
ε(T, e) are such that each vertex v on P (T ) other than a or b will
contribute both +ϕ(v) and −ϕ(v) to the summation, so the summation
of differences “telescopes”. Consequently, we have

α(Q(g)) =
∑

T∈T(G)

ϕ(b)yT = ϕ(b)T (G;y).

Comparing this with the RHS we obtain the equation of rational func-
tions

ϕ(b)T (G;y) = T (G/ab;y).

Finally, we conclude that

Yab(G;y) =
1

ϕ(b)
=

T (G;y)

T (G/ab;y)
,

which completes the proof. �

It is not hard to adapt the first proof of Kirchhoff’s Formula to com-
pute the electrical potentials ϕ(v) for all v ∈ V . (In doing so, the
All-Minors Matrix-Tree Theorem comes into play.) From these electri-
cal potentials, all of the currents are then determined by Ohm’s Law,
and they turn out to have simple expressions as determinants as well.
This determines the response of the whole network to a simple signal
consisting of a current flowing in at a single vertex and out at another
single vertex. The response of the network to a more complicated
applied current can then be calculated by the “Principle of Superpo-
sition”, since the system of equations is linear. It is also possible to
solve the system while holding some of the vertices at fixed electrical
potentials (subject to certain restrictions).

For a thorough development of the theory of electrical networks I
recommend the reference text of Balabanian and Bickart [1]. Vágó’s
book [16] is a good introduction. The book by Doyle and Snell [8]
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is an excellent, relatively non-technical, development of some of the
phenomena discussed in Sections III and IV below. Biggs’ paper [2]
and Chapter 2 of Lyons and Peres [11] develop this theory in more
detail. The classic paper of Brooks, Smith, Stone, and Tutte [4] gives
a surprising application of electrical network theory in combinatorics.
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III. The Half-Plane Property and Rayleigh
Monotonicity.

In this section we prove two physically intuitive properties of elec-
trical networks: Rayleigh Monotonicity and the Half-Plane Property.
Somewhat more precisely, we show that every electrical network satis-
fies the half-plane property, and that every homogeneous, multiaffine
polynomial satisfying the half-plane property also satisfies Rayleigh
monotonicity. Then we abstract these properties and apply them to
structures more general than graphs. As a consequence we deduce some
inequalities for spanning trees in graphs (and for bases in certain more
general matroids).

Let G = (V,E) be a connected graph, let y = {ye : e ∈ E} be
indeterminate admittances on the edges of G, and let a, b ∈ V be
distinct vertices of G. Let Yab(G;y) denote the effective admittance of
the network (G,y) measured between a and b. By Kirchhoff’s Formula

Yab(G;y) =
T (G;y)

T (G/ab;y)
.

Let H be the graph obtained from G by adjoining a new edge f with
ends a and b. Then G = H r f and G/ab = H/f , so that Kirchhoff’s
Formula can also be written

Yab(G;y) =
T (H r f ;y)

T (H/f ;y)
.

We begin by considering Rayleigh Monotonicity. Let e ∈ E be any
edge of G. If each edge of G has positive admittance (yc > 0 for all
c ∈ E) and if the admittance ye is increased, then the effective ad-
mittance Yab(G;y) cannot decrease: this is the principle of Rayleigh
Monotonicity. (It is physically sensible but does require proof.) Ex-
pressed symbolically, if yc > 0 for all c ∈ E then

∂

∂ye

Yab(G;y) ≥ 0.

Now for some shorthand notation: let T = T (H;y) and for c ∈ E(H)
let T c = T (H r c;y) and Tc = T (H/c;y). Thus we have

T = T c + ycTc

for any c ∈ E(H). This is a generalization of the deletion/contraction
recursion at the beginning of Section I. We extend this notation to
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multiple (but distinct) sub- and super-scripts in the obvious way. In
particular,

T = T ef + yeT
f
e + yfT

e
f + yeyfTef .

(Note that the polynomials T ef , T f
e , T e

f and Tef do not involve the
indeterminates ye or yf .)

Computing the above partial derivative by Kirchhoff’s Formula and
the quotient rule yields

∂

∂ye

Yab(G;y) =
∂

∂ye

T f

Tf

=
∂

∂ye

T ef + yeT
f
e

T e
f + yeTef

=
T f

e (T e
f + yeTef )− (T ef + yeT

f
e )Tef

(T e
f + yeTef )2

=
T f

e T
e
f − TefT

ef

(Tf )2
.

Thus, the principle of Rayleigh Monotonicity is equivalent to the asser-
tion that for any graph H with positive edge-weights {yc : c ∈ E(H)},
and for any two edges e, f ∈ E(H),

∆T (H){e, f} = T f
e T

e
f − TefT

ef ≥ 0,

in which T = T (H) = T (H;y) is the spanning-tree enumerator of H.
This difference ∆T (H){e, f} is called the Rayleigh difference of e and
f in T (H). We will derive Rayleigh monotonicity in this form from
the half-plane property.

The motivation for the Half-Plane Property is also physical, but is
less intuitive. To really understand it, one needs to know how the
Laplace transform is used to determine the effective admittance of a
linear LRC network – I will only describe this informally. In a network
with inductors and capacitors as well as resistors one considers all the
currents and electrical potentials as functions of time. Ohm’s Law must
be generalized to describe the inductors and capacitors – the result is a
linear system of coupled integro-differential equations for these quan-
tities. Miraculously, the Laplace transform maps this into a system
of linear equations for rational functions in the field C(s), which can
be solved as in Section II. The variable s = λ + iω is Laplace conju-
gate to the time variable, and physically is a complex frequency. The
imaginary part ω is a phase-shift, and the real part governs the ampli-
tude response of the network element: λ > 0 corresponds to decreasing
amplitude, and λ < 0 corresponds to increasing amplitude.
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A passive network element is one which dissipates energy, or in other
words does not contain an internal power source. Ordinary resistors,
capacitors, and inductors are passive elements. Since a passive network
element e ∈ E dissipates energy, its amplitude response is decreasing,
so that the real part of its admittance is positive: Re(ye) > 0. It is
physically sensible that if every element e ∈ E dissipates energy, then
the whole network (G,y) dissipates energy. That is, if Re(ye) > 0 for
all e ∈ E, then Re Yab(G;y) > 0. This is the Half-Plane Property.

As with Rayleigh monotonicity, we translate the half-plane prop-
erty into an equivalent statement about the spanning-tree enumerator
T (H;y). Assume that y = {yc : c ∈ E(H)} are complex numbers
such that T (H;y) = 0. Since T = T f + yfTf = 0, we see that

yf = −T
f

Tf

= −Yab(G;y).

If Re(yc) > 0 for all c ∈ E(G), then the half-plane property implies
that Re Yab(G;y) > 0, so that Re(yf ) < 0. It follows from this that
if Re(yc) > 0 for all c ∈ E(H), then T (H;y) 6= 0. It is this property
which we call the half-plane property of the polynomial T (H;y).

Conversely, from the half-plane property of the spanning tree enu-
merator, it follows that if Re(yc) > 0 for all c ∈ E(G), then Re Yab(G;y) ≥
0. To show that the real part of the effective admittance is in fact
strictly positive depends on the fact that T (G;y) is homogeneous –
to prove this we need to develop a little bit of the general theory first.

To summarize, we have identified two properties – Rayleigh Mono-
tonicity and the Half-Plane Property – that hold for all electrical net-
works. In fact, we can abstract these properties away from this partic-
ular physical application, and consider whether they hold more gener-
ally. To do this, let Z ∈ C[y] be any polynomial in the indeterminates
y = {ye : e ∈ E} with complex coefficients. Such a polynomial is ho-
mogeneous if every monomial occurring in Z has the same total degree,
and is multiaffine if every indeterminate ye occurs at most to the first
power in Z. For example, the spanning-tree enumerator of a graph is
homogeneous and multiaffine.

We can use the sub- and super-script notation for any multiaffine
polynomial Z. For example, for any e, f ∈ E,

Z = Zef + yeZ
f
e + yfZ

e
f + yeyfZef .

We say that Z satisfies the Rayleigh condition provided that all coef-
ficients of Z are nonnegative, and if yc > 0 for all c ∈ E, then for any
distinct e, f ∈ E,

∆Z{e, f} = Zf
eZ

e
f − ZefZ

ef ≥ 0.
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We say that Z has the half-plane property provided that either Z is
identically zero, or if Re(yc) > 0 for all c ∈ E, then Z(y) 6= 0. It will
be convenient to have the notation

H = {z ∈ C : Re(z) > 0}
for the open right half-plane in C.

Theorem 9 is a “folklore” result in Electrical Engineering.

Theorem 9. For any graph G = (V,E), the spanning-tree enumerator
T (G;y) has the half-plane property.

Proof. Orient G arbitrarily, and let D be the corresponding signed
incidence matrix. Let a ∈ V be any vertex, and let Da = D(a|). By
Proposition 3, the rows of Da are linearly independent. By Theorem
5, T (G;y) = detL(a|a) = detDaY D

†
a.

Now let ye ∈ C be such that Re(ye) > 0 for all e ∈ E. We will
show that T (G;y) 6= 0 by showing that L(a|a) is an invertible matrix,
so that detL(a|a) 6= 0. To see that L(a|a) is invertible, consider any
nonzero column vector z 6= 0 indexed by V r {a}. We will show that
L(a|a)z 6= 0: this is one criterion for L(a|a) to be invertible. To show
that L(a|a)z 6= 0, we will show that z†L(a|a)z 6= 0. Let w = D†

az. The
columns of D†

a are linearly independent, and z 6= 0, so that w 6= 0.
Now

z†L(a|a)z = z†DaY D
†
az = w†Yw =

∑
e∈E

ye|we|2.

The numbers |we|2 are nonnegative real numbers, and at least one
of them is strictly positive since w 6= 0. Since Re(ye) > 0 for all
e ∈ E it follows that Re(z†L(a|a)z) > 0: in particular, z†L(a|a)z 6= 0.
Therefore, L(a|a) is invertible, so that detL(a|a) 6= 0. This completes
the proof. �

In order to derive Rayleigh monotonicity from the half-plane prop-
erty we make use of the following general facts. The proofs are a bit
finicky, but not really difficult.

Lemma 10. Let Z be a multiaffine polynomial with the half-plane prop-
erty, let e ∈ E, and consider Z = Ze + yeZe. Then both Ze and Ze

also have the half-plane property. Thus, for disjoint subsets I, J ⊆ E,
the polynomial ZJ

I has the half-plane property.

Proof. If Z ≡ 0 then the statement is trivial, so assume not. We begin
by showing that Ze has the half-plane property. If Ze ≡ 0 then this
is trivial, so assume not. Let wc ∈ C be such that Re(wc) > 0 for all
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c ∈ Ere. Since Z has the half-plane property, for any such w we have
Re(Ze(w)/Ze(w)) ≥ 0 if Ze(w) 6= 0, and if Ze(w) = 0 then Ze(w) 6= 0.

Suppose that w ∈ HEre is such that Ze(w) = 0. Since Ze 6≡ 0, there
is an index f ∈ E r e such that Zef (w) 6= 0 (and hence Ze

f (w) 6= 0).

Now let yc = wc for all c ∈ Er{e, f} and let yf = wf +η, where η = ρeiθ

with ρ > 0 small enough so that Re(yf ) > 0 for all 0 ≤ θ < 2π. (That
is, ρ < Re(wf ).) As a polynomial in η, Ze(y) = 0 when η = 0. Since
this polynomial has only finitely many roots we can choose a small ρ
such that Ze(y) 6= 0 for all 0 ≤ θ < 2π. Now

Ze(y)

Ze(y)
=
Ze(w) + ηZe

f (w)

Ze(w) + ηZef (w)
=

Ze(w)

Zef (w)
· 1

η
+
Ze

f (w)

Zef (w)
.

Note that since Ze(w) = 0 we have Ze(w) 6= 0, so the first term is not
zero. Take ρ > 0 small enough that the modulus of the first term is
strictly greater than the modulus of the second term (and Re(yf ) > 0,
too, of course). Since 0 ≤ θ < 2π is arbitrary, we can choose θ so that
Re(Ze(y)/Ze(y)) < 0. But this contradicts the fact that Z has the
half-plane property. Therefore, the point w does not exist, so that Ze

has the half-plane property.
Replacing ye by 1/ye in Z and multiplying by ye, one sees that since

Z = Ze + yeZe has the half-plane property, so does the polynomial
Ze + yeZ

e. (This polynomial need not be homogeneous.) Applying the
above argument to this polynomial shows that Ze has the half-plane
property. The remaining statement about ZJ

I follows by induction on
|I|+ |J |. �

(With Lemma 10 at hand, we can now show that the half-plane
property for T = T (H;y) implies that Re Yab(G;y) > 0 for all y ∈
HE(G). We have seen that ReT f (y)/Tf (y) ≥ 0 for such y. From the
form of T we see that neither T f nor Tf is identically zero. By Lemma
10, both T f and Tf have the half-plane property, so that T f/Tf defines
a (nonvanishing) holomorphic function from HE(G) to C. By the Open
Mapping Theorem, the image of this function is either a single point or
an open subset of C. Since T is homogeneous, the polynomials T f and
Tf have different degrees, so that T f/Tf is not a constant function. Its
image is therefore open and contained in the closure of H. Thus, its
image is contained in H, so that Re Yab(G;y) > 0 for all y ∈ HE(G).)

Proposition 11. Let Z ∈ C[y] be a homogeneous multiaffine polyno-
mial. The following are equivalent:
(a) Z has the half-plane property.
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(b) If ae ≥ 0 and be ≥ 0 and ye = aex + be for all e ∈ E, then as a
polynomial in x, Z(ax+ b) has only real nonpositive roots.

Proof. Let Z be homogeneous of degree r. To see that (a) implies (b),
assume that Z has the half-plane property, and let ye = aex+ be as in
part (b). Let J be the set of indices e ∈ E for which ye = 0, and note
that Z(y) = ZJ(y). Let ξ ∈ C be any complex number that is not a
nonpositive real. Then there are complex numbers z, w ∈ C such that
Re(z) > 0, Re(w) > 0, and z/w = ξ. Let ue = aez + bew, and note
that ue = 0 for e ∈ J , and Re(ue) > 0 for e ∈ E r J . Since ZJ has
the half-plane property (by Lemma 10) we see that Z(u) = ZJ(u) 6= 0.
Finally,

Z(aξ + b) = w−r Z(u) 6= 0,

so that the polynomial Z(ax+b) has only real nonpositive roots. This
shows that (a) implies (b).

Conversely, assume (b) and let ye ∈ C be such that Re(ye) > 0 for all
e ∈ E. Then there are complex numbers z, w ∈ C with Re(z) > 0 and
Re(w) > 0 such that all of the ye are nonnegative linear combinations
of z and w: that is, ye = aez+bew with ae ≥ 0 and be ≥ 0 for all e ∈ E.
(For instance, let z and w be the elements of the set {ye : e ∈ E} of
maximum or of minimum argument, respectively.) Since Re(z) > 0 and
Re(w) > 0, it follows that ξ = z/w is not a nonpositive real number.
Therefore, from (b) it follows that Z(aξ + b) 6= 0, and hence that

Z(y) = Z(az + bw) = wr Z(aξ + b) 6= 0,

so that Z has the half-plane property, proving (a). �

Lemma 12. Let Z ∈ C[y] be a homogeneous multiaffine polynomial
with the half-plane property. For any distinct e, f ∈ E, if neither
of the polynomials Zef or Zef is identically zero, then neither of the
polynomials Zf

e or Ze
f is identically zero.

Proof. Suppose that neither of Zef or Zef is identically zero, but that
at least one of Zf

e or Ze
f is identically zero. By symmetry, we may

assume that Zf
e ≡ 0. We will derive a contradiction by finding yc ∈ C

with Re(yc) > 0 for all c ∈ E such that Z(y) = 0. First, we solve the
equation

0 = Z(y) = Zef + yfZ
e
f + yeyfZef

for the variable ye to get

ye = −Z
ef

Zef

· 1

yf

−
Ze

f

Zef

.
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Now Zef/Zef is a nonconstant rational function which, by Lemma 10, is
nonvanishing and holomorphic on the connected open set HEr{e,f}. By
the Open Mapping Theorem, the image of this set by this function is
an open subset of C, so it is not contained in the nonnegative real axis.
Thus, there are complex numbers yc ∈ C with Re(yc) > 0 for all c ∈ Er
{e, f} such that Zef/Zef is not a nonnegative real number. Now we can
choose yf = ρeiθ with ρ > 0 and −π/2 < θ < π/2 so that −Zef/Zefyf

has strictly positive real part. Finally, taking ρ > 0 sufficiently small
we can guarantee that Re(−Zef/Zefyf ) > Re(−Ze

f/Zef ). This implies
that Re(ye) > 0, and gives a solution to Z(y) = 0 which contradicts
the fact that Z has the half-plane property. This shows that neither
Zf

e nor Ze
f are identically zero. �

Theorem 13. Let Z ∈ R[y] be a homogeneous multiaffine polynomial
with nonnegative coefficients. If Z has the half-plane property then Z
satisfies Rayleigh monotonicity.

Proof. Assume that Z has the half-plane property, and let yc > 0 for
all c ∈ E. Consider two distinct indices e, f ∈ E, and the expansion

Z(y) = Zef (y) + yeZ
f
e (y) + yfZ

e
f (y) + yeyfZef (y).

The coefficients Zef , Zf
e , Ze

f , and Zef are nonnegative real numbers.
Since Z has nonnegative coefficients and ye > 0 for all e ∈ E, these
coefficients are zero only if they are identically zero as polynomials. By
Lemma 12, if either Zf

e = 0 or Ze
f = 0 then either Zef = 0 or Zef = 0.

Now let wc = acx+ bc for each c ∈ E, in which

ac =

 Ze
f if c = e,

Zf
e if c = f,
0 if c ∈ E r {e, f}

and

bc =

 0 if c = e,
0 if c = f,
yc if c ∈ E r {e, f}

By Proposition 11, Z(w) = Z(ax+ b) has only real nonpositive roots.
Substituting into the above expansion, we see that

Z(w) = Zef + (2Zf
eZ

e
f )x+ (Zf

eZ
e
fZef )x

2.

Since this quadratic in x has only real roots, its discriminant is non-
negative. That is,

(2Zf
eZ

e
f )

2 − 4(Zf
eZ

e
fZef )Z

ef ≥ 0.
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Finally, if either Zf
e = 0 or Ze

f = 0 then, since either Zef = 0 or

Zef = 0, we see that ∆Z{e, f} = 0. If both Zf
e > 0 and Ze

f > 0 then
the nonnegativity of the above discriminant yields ∆Z{e, f} ≥ 0. This
shows that Z satisfies Rayleigh monotonicity. �

This is not the simplest proof of Rayleigh monotonicity for electrical
networks. A very simple proof via “Thomson’s Principle” is given in
Sections 3.5 and 4.1 of Doyle and Snell [8], and in Chapter 2 of Lyons
and Peres [11]. The fact that the half-plane property implies Rayleigh
monotonicity was sharpened by Brändén [3], who showed that a ho-
mogeneous multiaffine polynomial Z with nonnegative coefficients has
the half-plane property if and only if it is strongly Rayleigh, meaning
that for any two e, f ∈ E, ∆Z{e, f} ≥ 0 whenever all yc ∈ R are real
(not just positive).

* * * * *

We now turn to some combinatorial applications of this theory of
electrical networks. This is motivated by the following two questions.
What do we need to assume to get a (homogeneous, multiaffine) poly-
nomial Z ∈ C[y] that has the half-plane property, or satisfies Rayleigh
monotonicity? What consequences can we derive from these proper-
ties? It turns out that these questions fit naturally within a branch of
combinatorics called Matroid Theory.

Matroids were defined in 1932 by Whitney, as an abstraction of the
idea of linear independence in vector spaces. The book by Oxley [13]
has become the standard reference, and he has also written an excellent
introductory survey [14]. There are several equivalent definitions – the
most convenient for our purposes is as follows. A matroid is a pair
M = (B, E) in which E is a finite set and B is a collection of subsets
B ⊆ E, all of the same size |B| = r, satisfying the following basis
exchange axiom:

• if B,B′ ∈ B and e ∈ BrB′, then there exists f ∈ B′ rB such
that (B r e) ∪ f ∈ B.

A set in the collection B is called a basis of M = (B, E), and r is the
rank of M. The basis exchange axiom is a familiar property of any two
bases B,B′ of a finite-dimensional vector space over any field.
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As an example, let F be any field, and let A be an r-by-m matrix
of rank r that has entries in F. Let E be the set of column indices of
A. This defines a matroid M = M[A] by saying that B ⊆ E is in B if
and only if A(|B] is invertible. The matrix A is a representation of M

over the field F. If a matroid M has a representation over F then M

is F-representable or representable over F. These are the examples of
matroids that come from linear algebra. There are, however, matroids
that are not representable over any field.

To connect with graph theory, let G = (V,E) be a connected graph,
orient the edges of G arbitrarily, and let D = D(G) be the corre-
sponding signed incidence matrix. Let a ∈ V be any vertex, and let
Da = D(a|). Then Da is an (n−1)-by-m matrix over R, and for B ⊆ E
of size |B| = n−1, Proposition 3 shows that Da(|B] is invertible if and
only if (V,B) is a spanning tree of G. Thus, the matroid M[Da] does
not depend on the choices of vertex a ∈ V nor of orientation of G. This
is the graphic matroid M(G) of G: the bases of M(G) are the (edge-sets
of) spanning trees of G.

Proposition 3 shows that graphic matroids have a special property:
they can be represented by a matrix A over R such that every square
submatrix of A has determinant ±1 or 0. Such matroids M = M[A]
are called regular. There are regular matroids that are not graphic. A
famous theorem of Tutte is that a matroid is regular if and only if it can
be represented over both GF(2) and GF(3). Another famous theorem
of Seymour gives a structural characterization of regular matroids.

A condition weaker than being regular is as follows. A matroid M

is complex totally unimodular (CTU) if and only if it can be repre-
sented by a matrix A over C such that every square submatrix of A
has determinant either 0 or of modulus 1. A related condition is that
M is sixth-root-of-unity ( 6

√
1), meaning that it can be represented by

a matrix A over C such that every square submatrix of A has deter-
minant either 0 or a sixth-root of one. Clearly, if M is 6

√
1 then M is

CTU. A recent theorem of Choe, Oxley, Sokal, and Wagner [6] is that
the converse holds: a matroid is CTU if and only if it is 6

√
1. Every

regular matroid is 6
√

1, but there are 6
√

1 matroids that are not regular.
Another recent theorem due to Whittle [20] is that a matroid is 6

√
1 if

and only if it is representable over both GF(3) and GF(4).

We can generalize the spanning-tree enumerator of a graph G =
(V,E) by thinking of it in terms of the graphic matroid M = M(G). Let
M = (B, E) be any matroid, and let y = {ye : e ∈ E} be algebraically
independent commuting indeterminates indexed by E. For B ⊆ E let
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yB =
∏

e∈B ye as before, and define the basis-enumerator of M to be
the polynomial

B(M;y) =
∑
B∈B

yB.

Clearly, if M = M(G) is the graphic matroid of a graph G then the
basis-enumerator B(M;y) of M equals the spanning-tree enumerator
T (G;y) of G.

A matroid M = (B, E) is a HPP matroid if its basis-enumerator
B(M;y) has the half-plane property. A matroid M = (B, E) is a
Rayleigh matroid if its basis-enumerator B(M;y) satisfies Rayleigh
monotonicity. Theorem 13 has the following immediate consequence.

Corollary 14. Every HPP matroid is a Rayleigh matroid.

Theorem 9 can be rephrased as saying that every graphic matroid is
a HPP matroid. In fact, the proof can be adapted to show much more.

Theorem 15. Every 6
√

1 matroid is a HPP matroid.

Proof. Exercise! As a hint, first show that if A is a matrix representing
M as in the definition of a CTU matroid, and if Y = diag(ye : e ∈ E)
then

B(M;y) = detAY A†.

�

In summary, we have the hierarchy of classes of matroids indicated in
Figure 5. (Smaller classes are at the bottom – larger classes are at the
top.) Each of these implications is strict – no two of these properties
are equivalent. There are HPP matroids that are not representable
over any field [19]. It is natural to wonder whether there is an example
of a homogeneous multiaffine polynomial with the half-plane property
that is not a (weighted) basis-enumerator of a matroid. The answer is
NO, and this is proved in [6], but even more is true.

Theorem 16 (Wagner [18], Corollary 4.9.). Let Z(y) =
∑

S⊆E c(S)yS

be a homogeneous multiaffine polynomial with nonnegative real coeffi-
cients. If Z(y) satisfies Rayleigh monotonicity then

Supp(Z) = {S ⊆ E : c(S) > 0}

is the set of bases of a matroid.

(The proof of Theorem 16 is gruesome and dull, and is omitted.)
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Rayleigh
⇑

HPP
⇑
6
√

1
⇑

regular
⇑

graphic

Figure 5. A hierarchy of matroid classes.

Thus, the theory of the half-plane property and Rayleigh monotonic-
ity, abstracted away from the motivating examples of electrical net-
works, finds its natural context as a topic in matroid structure theory.

To conclude this section, we consider structural consequences that
follow from a matroid M being Rayleigh, or HPP.

Proposition 17. Let (M, E) be a matroid. The following are equiva-
lent:
(a) The basis-enumerator B(M;y) satisfies Rayleigh monotonicity.
(b) Fix yc > 0 for all c ∈ E, and choose a basis B of M randomly with
probability proportional to yB. Then for any two elements e, f ∈ E,

Pr[e ∈ B and f ∈ B] ≤ Pr[e ∈ B] · Pr[f ∈ B].

Proof. Let M = M(y) = B(M;y), to simplify the notation. The
probability of choosing the basis B ∈ B is yB/M . Thus, the probability
of choosing a basis B that contains e is

Pr[e ∈ B] =
yeMe

M
.

Similarly, the probability of choosing a basis B that contains f is

Pr[e ∈ B] =
yfMf

M
,

and the probability of choosing a basis B that contains both e and f
is

Pr[e ∈ B and f ∈ B] =
yeyfMef

M
.

The inequality in part (b) is thus

yeyfMef

M
≤ yeMe

M
· yfMf

M
.
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Since all y > 0, this is equivalent to

Mef ·M ≤Me ·Mf .

Now the relations Me = M f
e + yfMef and Mf = M e

f + yeMef and

M = M ef + yeM
f
e + yfM

e
f + yeyfMef

and some cancellation shows that the inequality in part (b) is equivalent
to ∆M{e, f} ≥ 0. It follows that parts (a) and (b) of the proposition
are equivalent. �

The inequalities of Theorem 18 were proven for regular matroids
by Stanley [15] in 1981, and the statement about the roots of the
polynomial was proved for regular matroids by Godsil [9] in 1982.

Theorem 18 (Choe-Wagner [7], Theorem 4.5.). Let (M, E) be a HPP
matroid of rank r, and let S ⊆ E. For every 0 ≤ k ≤ r, let Nk be the
number of bases B of M such that |B ∩ S| = k. Then the polynomial
N0 + N1x + · · · + Nrx

r has only real nonpositive roots. Thus, if the
degree of this polynomial is d then for all 1 ≤ k ≤ d− 1,

N2
k(

d
k

)2 ≥ Nk−1(
d

k−1

) · Nk+1(
d

k+1

) .
Proof. Let M = M(y) = B(M;y) be the basis-enumerator of M. For
each e ∈ E let ye = aex + be, in which ae = 1 if e ∈ S and ae = 0
if e ∈ E r S, and be = 1 − ae. Since M has the half-plane property,
M(ax + b) has only real nonpositive roots, by Proposition 11. This
is the polynomial in the statement of the theorem. The inequalities
follow from the Lemma below. �

Lemma 19 (Newton’s Inequalities). Let F (x) = N0 +N1x+ ·+Ndx
d

be a polynomial of degree d in R[x] that has only real roots. Then for
all 1 ≤ k ≤ d− 1,

N2
k(

d
k

)2 ≥ Nk−1(
d

k−1

) · Nk+1(
d

k+1

) .
Sketch of Proof. It suffices to prove these inequalities when all the roots
of F (x) are simple roots, since an arbitrary polynomial with only real
roots can be obtained as a limit of such polynomials with only simple
roots. Rolle’s Theorem implies that if F (x) has only real simple roots,
then its derivative F ′(x) also has only real simple roots.
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Consider any 1 ≤ k ≤ d − 1. Let G(x) = (d/dx)k−1F (x), let
H(x) = xd−k+1G(1/x), and let J(x) = (d/dx)d−k−1G(x). Then J(x)
is a quadratic polynomial with only real simple roots, so the discrim-
inant of this polynomial is positive. This yields Newton’s Inequalities
above. �

Even for graphs, the conclusion of Theorem 18 can be interesting.
As one simple example, let G = (V,E) be a connected graph, let v ∈ V
be a vertex of degree d in G, and for 0 ≤ k ≤ d let Nk be the number
of spanning trees T of G such that v has degree k in T . Theorem 18
implies that the polynomial

N0 +N1x+ · · ·+Ndx
d

has only real nonpositive roots, and the resulting inequalities are not
obviously obvious.
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IV. Random Walks and Electrical Networks.

The system of equations used in the derivation of Kirchhoff’s For-
mula has another interpretation, in terms of “hitting probabilities” for
a random walk on the weighted graph (G,y). This leads to probabilis-
tic interpretations of various facts about electrical networks.

Let G = (V,E) be a connected graph, with indeterminate admit-
tances y = {ye : e ∈ E} on the edges. Orient G arbitrarily, let D be
the corresponding signed incidence matrix, and let L = DYD† be the
weighted Laplacian matrix of G. (Here Y = diag(ye : e ∈ E) is the
diagonal matrix of admittances.) Note that L does not depend on the
choice of orientation used to define D.

Let ϕ be a column vector indexed by V , and for v ∈ V let δv be the
V -indexed column vector defined by

(δv)w =

{
1 if w = v,
0 if w 6= v.

The system of equations used to derive Kirchhoff’s Formula for Yab(G;y)
is

Lϕ = δb − δa.

We normalized ϕ(a) = 0 and computed ϕ(b) by Cramer’s Rule. Al-
ternatively, we could have normalized ϕ(a) = 0 and ϕ(b) = 1, and
calculated the value Y satisfying

Lϕ = Y [δb − δa] .

In this form, the problem can be generalized to that of finding vectors
ϕ and h such that Lϕ = h. In this equation, ϕ(v) is the electrical
potential of the vertex v, and h(v) is the external (driving) current
being supplied to the vertex v. Proposition 20 is one natural situation
in which this problem has a unique solution.

Proposition 20. Let (G,y) be an electrical network, and let L =
L(G;y) be the weighted Laplacian matrix of (G,y). Let U ⊆ V be
a nonempty set of vertices, and let f(v) for each v ∈ U be fixed scalars.
Then there is a unique pair of V -indexed column vectors ϕ and h, such
that ϕ(v) = f(v) for all v ∈ U , h(v) = 0 for all v 6∈ U , and Lϕ = h.

Proof. Let W = V r U and let ψ be the W -indexed column vector
with entries ψ(v) = ϕ(v) for all v ∈ W . Consider just the equations in
Lϕ = h corresponding to rows in W : that is, L(U |)ϕ = 0. Subtract
from both sides all the terms in L(U |)ϕ that depend on the scalars
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{f(v) : v ∈ U}. The result is a system of equations of the form
L(U |U)ψ = g for some W -indexed vector g. (In fact, g = −L(U |U ]f ,
in which f is the U -indexed column vector with entries f(v) for all
v ∈ U .) By Theorem 6, L(U |U) is invertible, so this system has a
unique solution for ψ. This determines the vector ϕ uniquely, which
determines h = Lϕ uniquely. �

Proposition 20 says that if we fix the electrical potentials of some
nonempty subset U of vertices, and if we require that Kirchhoff’s Cur-
rent Law holds at all vertices that are not in U , then the currents in-
ternal to the network have exactly one solution satisfying Ohm’s Law
and Kirchhoff’s Voltage Law. The external (driving) currents h are
just what is needed to hold all the vertices v ∈ U at their required
potentials f(v).

The problem solved by Proposition 20 is known as the Dirichlet
Problem for the network (G,y). The vertices in U are on the boundary,
and the values {f(v) : v ∈ U} are boundary conditions. The vertices in
W = VrU are in the interior, and the functionϕ is said to be harmonic
at a vertex v ∈ V if (Lϕ)(v) = 0. Proposition 20 states that for any
network (G,y) and any nonempty set U and any boundary conditions
on U , there is a unique function ϕ agreeing with these conditions on
the boundary and harmonic at every vertex in the interior.

Dirichlet problems on graphs are discrete analogues of the Dirich-
let problems that arise in the theory of partial differential equations
(PDEs). Biggs [2] and Doyle and Snell [8] contain more informa-
tion about Dirichlet problems on graphs, and any introductory text
on PDEs should have a section on Dirichlet problems in Euclidean
space. Any twice-differentiable manifold M has a differential operator
∆ called the Laplacian operator on M . For Euclidean d-space

∆ = ∇ · ∇ =
d∑

i=1

∂2

∂x2
i

.

These Laplacian differential operators are the continuous analogues of
the (weighted) Laplacian matrices that we are dealing with. Dirichlet
problems are standard fare in physics and applied mathematics. Not
only do they describe electrical networks, but also the transport of
heat, diffusive dynamics, and other processes. The rest of this section
is essentially concerned with a discrete analogue of diffusion processes.
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Let G = (V,E) be a finite connected graph, and let y = {ye : e ∈ E}
be positive real weights on the edges of G. We assume that G has
no loops. We can assume that G has no parallel edges by replacing
all the edges e1, ..., ek between v and w with a single edge e of weight
ye = ye1 + · · ·+yek

. Let L = L(G;y) be the weighted Laplacian matrix
of (G,y), and for each vertex v ∈ V let

Cv = Lvv =
∑

e ∈ E incident with v

ye.

The random walk on the network (G,y) is the following process. A
vertex v(0) ∈ V is chosen at random according to some probability
distribution π(0) on V . Thereafter, for each t ∈ N, if v(t) = v then the
next vertex v(t + 1) = w is chosen at random, subject to w 6= v, with
probability equal to p(v → w) = −Lvw/Cv. Thus, the sequence

v(0), v(1), v(2), v(3), ...

defines an infinite walk in the graph G, and at each step the probability
that this walk moves from v to w (along e) is ye/Cv.

Let P be the V -by-V transition matrix for the random walk on
(G,y): the entries of P are given by Pvv = 0 for all v ∈ V , and if v 6= w
then Pvw = p(w → v). The reason for indexing P like this is that if
we think of the probability distribution π(0) of v(0) as a V -indexed
column vector, then the probability distribution of v(1) is

π(1) = Pπ(0).

It follows that for all t ∈ N, the distribution of v(t) is P tπ(0).
From the general theory of Markov chains, there is a unique prob-

ability distribution π on V such that Pπ = π. Moreover, if G is not
bipartite then for any choice of π(0),

lim
t→∞

P tπ(0) = π.

This distribution π is called the stationary distribution of P . See Doyle
and Snell [8] or Lyons and Peres [11] for details.

We can express the transition matrix P in terms of the weighted
Laplacian matrix L. For all v ∈ V we have Pvv = 0, and for v 6= w in
V we have

Pvw = p(w → v) = −Lwv/Cw = −Lvw/Cw.

Let C be the diagonal matrix C = diag(Cv : v ∈ V ). Thus,

P = I − LC−1.
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The equation defining the stationary distribution, Pπ = π, is thus
(I − LC−1)π = π, which is equivalent to

LC−1π = 0.

The kernel of the weighted Laplacian matrix is one-dimensional, and is
spanned by the all-ones vector. (Exercise! Use Theorem 5.) Therefore,
C−1π = (1/z)1 for some scalar z. Since π = (1/z)C1 is a probability
distribution, the sum of its entries is one, so that z =

∑
v∈V Cv and

π is the V -indexed vector with v-th entry π(v) = Cv/z for all v ∈ V .
That is, the random walk on (G,y) has the property that the fraction of
time that it spends at vertex v ∈ V is proportional to Cv, for all v ∈ V .

Finally, we consider the question of hitting probabilities for the ran-
dom walk on (G,y). Fix disjoint nonempty subsets A,B ⊂ V and for
any v ∈ V , let η(v) denote the probability that the random walk on
(G,y) starting from v (i.e. from δv) hits a vertex in B before it hits a
vertex in A. Clearly η(a) = 0 for all a ∈ A and η(b) = 1 for all b ∈ B.
Arrange these hitting probabilities η(v) for all v ∈ V in a V -indexed
column vector η.

Consider any vertex v ∈ V that is not in the set U = A ∪ B, and
let W be a random walk starting from v(0) = v. By considering the
possibilities for v(1) = w on W, we see that

η(v) =
∑

w adjacent to v

p(v → w)η(w).

If these equations were true for all vertices in V , then that would
be the matrix equation η† = η†P , or equivalently η†LC−1 = 0†, or
equivalently Lη = 0 (since L† = L). But in Lη = 0 only the equations
corresponding to rows indexed by v ∈ W = V r U are required: for
v ∈ U , the v-th entry of Lη need not be zero.

Thus, we seek a solution to the system of equations

Lη = h

such that η(a) = 0 for all a ∈ A and η(b) = 1 for all b ∈ B, and such
that h(v) = 0 for all v ∈ V r (A ∪ B). This is a Dirichlet problem on
the network (G,y)! The boundary of the network is U = A ∪ B, and
the boundary values for η are as given. The interior of the network is
W = V r U , and η is required to be harmonic at all interior vertices.
By Proposition 20, this Dirichlet problem has a unique solution η and
h.

Now, we have already interpreted the unique solution to the Dirichlet
problem Lϕ = h in terms of electrical networks. The equation ϕ = η
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connects the theory of electrical networks with the theory of random
walks. If we ground all the vertices a ∈ A at an electrical potential of
zero volts ϕ(a) = 0, and we hold all the vertices b ∈ B at an electrical
potential of one volt ϕ(b) = 1, then the electrical currents will flow in
such a way that the potential of vertex v ∈ W is ϕ(v) volts. If we start
a random walk at v, then the probability that it hits B before it hits
A is η(v). The equation ϕ(v) = η(v) shows that these two seemingly
unrelated quantities are identical.

Doyle and Snell [8] and Lyons and Peres [11] take this connection
between random walks and electrical networks much further. Unfortu-
nately, I have run out of time and energy, so I’ll just have to leave it
at that.
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[16] I. Vágó, “Graph theory: Application to the Calculation of Electrical Net-

works,” Elsevier, Amsterdam, 1985.
[17] D.G. Wagner, Matroid inequalities from electrical network theory, Electron.

J. Combin. 11 (2004/06), #A1.
[18] D.G. Wagner, Negatively correlated random variables and Mason’s conjec-

ture for independent sets in matroids, Ann. Combin. 12 (2008), 211-239.
[19] D.G. Wagner and Y. Wei, A criterion for the half-plane property, Discrete

Math. 309 (2009), 1385-1390.
[20] G. Whittle, On matroids representable over GF(3) and other fields, Trans.

Amer. Math. Soc. 349 (1997), 579603.


