Задача 1.

Выберите оксиды, которые могут проявлять кислотные свойства:

1) Na₂O; 2) BeO; 3) Cr₂O₃; 4) CrO₃; 5) N₂O; 6) N₂O₃; 7) N₂O₅; 8) Cu₂O; 9) Cl₂O.

Запишите их номера в порядке возрастания, без пробелов и знаков препинания.

Решение:

Оксиды неметаллов в большинстве своем кислотные — в данном списке это оксид хлора и оксиды азота, кроме несолеобразующего N_2O . Среди оксидов металлов — кислотный CrO_3 (оксид, в котором металл проявляет высокую степень окисления), а также амфотерные BeO и Cr_2O_3 , проявляющие кислотные свойства в реакциях с основными реагентами. Оксиды металлов в степени окисления +1 кислотных свойств не проявляют.

Ответ: 234679

Задача 2.

Какой коэффициент должен стоять перед окислителем в уравнении реакции

$$P_2S_3 + HNO_3 \rightarrow H_3PO_4 + H_2SO_4 + NO_2 + H_2O$$
?

Решение:

Окислитель принимает электроны, это N в HNO₃. Уравняем реакцию (это можно делать любым способом, не обязательно методом электронно-ионного баланса, приведенным здесь):

$$P_2S_3 + 20H_2O - 28e = 2PO_4^{3-} + 3SO_4^{2-} + 40H^+$$
 | ·1
 $NO_3^- + 2H^+ + e = NO_2 + H_2O$ | ·28

$$P_2S_3 + 16H^+ + 28NO_3^- = 2PO_4^{3-} + 3SO_4^{2-} + 28NO_2 + 8H_2O$$

 $P_2S_3 + 28HNO_3 \rightarrow 2H_3PO_4 + 3H_2SO_4 + 28NO_2 + 8H_2O$

Ответ: 28

Задача 3.

Посмотрите фильм по адресу https://www.youtube.com/watch?v=1iEK94y1CxU .

В ракете фау-2, созданной в годы второй мировой войны, в качестве горючего использовали 3,9 т 75%-ного раствора этилового спирта. Какую массу окислителя — жидкого кислорода — заливали в ракету перед стартом? Ответ округлите до 0,1 т.

Решение:

Составим уравнение реакции сгорания топлива:

$$C_2H_6O + 3O_2 = 2CO_2 + 3H_2O$$
.

Количество спирта в ракете

$$v(C_2H_5OH) = m/M = m(p-pa)\cdot\omega/M = 3.9\cdot10^6 \text{ r}\cdot 0.75 / 46 \text{ г/моль} = 6.36\cdot10^4 \text{ моль}.$$

Согласно уравнению реакции, для сгорания 1 моля спирта нужно 3 моля кислорода. Т.е. для сгорания $6,36\cdot10^4$ моль спирта понадобится

$$v(O_2) = 3v(C_2H_5OH) = 3 \cdot 6,36 \cdot 10^4 = 1,91 \cdot 10^5$$
 моль.

Это составит

$$m(O_2) = M \cdot v = 32 \cdot 1,91 \cdot 10^5 = 6,112 \cdot 10^6 \text{ } r \approx 6,1 \text{ } T.$$

Ответ: 6,1.

Задача 4.

К раствору ацетата свинца добавили в разных пробирках растворы хлорида натрия, бромида калия, иодида рубидия. Напишите формулу вещества, которое выпало в осадок в левой пробирке. Индексы записывайте строчными цифрами (например: Fe2O3). Не забудьте использовать латинские буквы!

Решение:

Катионы свинца дают с галогенид-анионами осадки (можно этого и не знать, достаточно посмотреть в таблицу растворимости). Хлорид и бромид свинца белые, единственный окрашенный галогенид свинца — это желтый иодид.

Ответ: PbI2.

Задача 5.

Углекислый газ объемом 4,48 л (н.у.) пропустили в 100 г 6%-ного раствора гидроксида натрия. Сколько моль соли образовалось в растворе? Запишите число с точностью до сотых долей и через пробел – формулу соли. Индексы записывайте строчными цифрами (например: Fe2O3). Не забудьте использовать латинские буквы!

Решение:

Найдем количества реагентов:

$$v(CO_2) = V/V_m = 4,48/22,4 = 0,2$$
 моль; $v(NaOH) = m/M = m(p-pa)\cdot\omega/M = 100\cdot0,06/40 = 0,15$ моль.

Возможные уравнения реакций углекислого газа со щелочью:

$$CO_2$$
 + NaOH = NaHCO₃;
 CO_2 + 2NaOH = Na₂CO₃ + H₂O.

Очевидно, что для протекания 2-й реакции нужен избыток щелочи. Поэтому будет протекать 1-я реакция. Углекислый газ в избытке, считаем по щелочи. Образуется 0,15 моль гидрокарбоната натрия.

Ответ: 0,15 NaHCO3.