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Improvement of Product Distribution Efficiency using

Double-Weighted Flow Network on Lexicographic
Product of Path Graph and Empty Graph




Most distribution systems start
from the source of production, then
the products will be sent to each
authorized distribution center and
to the consumers.

The product distribution system
looks similar to a graph.

‘ Introduction




‘ Introduction

The product distribution system begins to transport products to the biggest intermediary
in the distribution channel and continues lowering until the consumers in which this
specific behavior is similar to the flow network on Lexicographic product of graphs.

e o .

Lexicographic product of graphs

' Introduction




‘ Lexicographic Product of Graphs

Path graph Empty graph () Lexicographic

Product

Definition : The path graph P, is a graph  Definition : An empty graph K. is a graph
where n vertices can be listed in order u;, u,,  with n vertices and zero edges.
., U, such that the edges are {u, u.;} where i

=12, .., n.
@
@ @ ® @ ®
Example of P,
@
Example of K,
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Flow network or transportation network

. Flow Network

« Directed graph
Sink +  Capacity
Source, which has
only outgoing flow
*  Sink, which has only
Incoming flow

N
Source




Q| Flow Network Definition

A flow network is a graph G = (V, E), where V is a set of vertices and E is a set of }’s edges — a subset
of V"X IV —together with a non-negative function ¢: V' X V' — R., called the capacity function. Without

loss of generality, we may assume that if (#, v) € E then (v, u) is also a member of E, since if (v, )

‘ Flow Network
¢ E then we may add (v, u) to E and then set ¢(v, u) = 0.




Q| Flow Definition

A flow is a function f: ¥V x V' — E that satisfies the following two constraints for all nodes « and v:

o  Skew symmetry: Only encode the net flow of units between a pair of nodes u and v, that is: f(u, v) = —f (v, u)
e  Capacity constraint: An arc's flow cannot exceed its capacity, that is: f(u, v) < c(u, v). ' Flow Network

e  Flow conservation: The net flow entering the node v is 0, except for the source, which "produces" flow, and the sink,
which "consumes" flow. That 1s: x7(v) =0 forall v € V'\{s, ¢}
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Q" Definition of Efficiency

Definition 2.2.11 Denote eff( f) is efficiency of flow f which

7, minT()

Ezﬁrm:max‘ﬂ T'(f)

and max(eff(f)) is maximum efficiency in which some flow f" in graph B, , has.

E,=E +E + Ep +E +FE, +E,

The efficiency of distribution channel
Milan Andrejic (2016)

Quality Speed Results
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QU Objective

Lexicographic

*  To deduce important theorems about how to find the most efficient way Product
to transport supplies on B, ,, which can be further applied to real life
product distribution Flow Network

‘ Our work

Results
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1. Minimum time flow solution in B,

Theorem: Let A4 be the minimum possible time from v, ;to v, . then
4 =mm(4,  +#k.i.j-1), k=12.3....m for j>2 when 4, =#(110)
and min(7'(f))=mimn( A4, +#(k,Ln)) for £=1,2.3,....m

.

Proof: From Dijkstra Algorithm
Consider an arbitrary vertex v, only (L.x, j—1),(2,x, j—1),....(m,x, j —1) are all incoming

edges of that vertex, so 4, =mn(4, ., +#(k.i.j—1)) whenk =1.2.3,... .mforall j =2
Considering v,; we found that it only connects to the edge (1,7,0). Therefore 4, =#(1,7,0),
completing the proof.

' Results
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2. Maximum flow solution B...

Theorem: If a graph G has unique maximum flow, removing an edge with highest time
weight results in a graph that has its maximum flow pattern the same as the original graph.

Proof: Let N be the amount of maximum flow in the original graph. Assume the contrary
that there exist some edges that its flow increases in the resulting graph. It is obvious that the
total flow in the resulting graph cannot exceed N, so there are some free spaces allowing
more flow to passes through to obtain the original N flow. That makes the maximum flow in
the original graph not unique, contradicting the assumption.

' Results
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3. Bounds on maximum efficiency

Theorem: For a maximum flow f in B .,

Proof:

min(7'( f))
b max(7'( f)) =ef(f)=2
Since eff (f)= 111!1;:[ “ 7] + 111'11;((];()]“)) for any flow f .
Observe that 0 < effaximmmnon =€f () <2.

Considering the maximum flow, ‘ f ‘ = max ‘ f ‘ and obviously 7(f) <max(T(f)).

max | £ N min(7(f)) -

Theretfore max‘ f ‘ max(7(f)) B effmmmu'ﬂw
min(7’( f))
1+ mex(T( 1) <eff(f)<2.

For a maximum flow f .

. Results
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4. Maximum flow implies maximum efficiency

Theorem: Ina graph B, , with a condition that

o ((LLD)=a,t(12,1)=0b, t(2.L])=c ua: 1(2,2.1)=d (@)
o c(LL)=ka, e(1,2.))=kb, c(2.1.])=ke cua= ¢(2,2.1)=kd a+h, x
o ((L10)za+b,1(1,2,0)2c+d, t(L.L1.2)2a+c waz £(2,,2) 2b+d 0
. k(a+b d
o o(L10)=c(l.2.0)=c(l12) = e(2,1.2) = x i x=LF 4“’* ) >
when k.a,b,c,de R" c+d, x .
We get that a solution which gives maximum flow also gives maximum efficiency.

b+d, x

. Results
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4. Maximum flow implies maximum efficiency

Proof: Consider closely, there are four types of flow which can probably give the maximum

flow.
Case 1 flow=a time=ka+2x o SO
Case 2 flow=b time=kb+2x / N
Case 3 flow=c time=kc+2x G X, O
Case 4 flow=d time=kd-+2x AN \ordx
Without loss of generality assume that a <b<c<d O 4w O

Case 1 time=ka+2x

a k,

We get that  eff, 0 + o (1)

When k =a+b+c+d we:= k, =2x+ka

Case 2 time=kb+2x

b k
We get that eﬁz:mr +—

k. 2x+kb

. Results
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4. Maximum flow implies maximum efficiency

Case 3 time=kc+2x

a, ka
We get that  eff, = ! +£ e, Zx% PSRRI (3) atx A
Case 4 time=kd+2x O A
We get that em:a+b+c+d+ I (4) "o s
k, 2x +kd

We are left proving that eff, > eff,, eff, —eff, >0 and eff, —eff, >0

. Results
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4. Maximum flow implies maximum efficiency

a, ka
Q ") Consider eff 4 — eff 1
atb, x ~ atg, X
/’/ \
/, \\\‘
6
\k_

\\é:j/' b+d,X
kd

Consider eff 4 — eff 2
When x= k*(a+b+c+d)/4

>

a+b+c+d k, 2x+ka ka
=1+ >14+—
k4 2x+kd 2x+kd kd
a
>1+-=
d
a
> 1
a+b+c+d
a
>1+—
k1
k, a
+—=eff 1
2x+ka k4 ©
a+b+c+d k a+b k
+ 2 . + 2
k4 2x+kd k4 2x+kb
c+d 2(d-b)(3a+b+c+Ad)
k4 (a+3b+c+d)(a+b+c+3d)

(6a2b+a2c—5a2d+8ab2+12abc+4abd+2ac2—2acd—4ad2+2b3+
7b%c+5b*d+6bc® +14bcd+8bd* +¢° +3c*d+3cd* +d°)/
(@+b+c+d)(@+3b+c+d)(a+b+c+3d)

0

. Results
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4. Maximum flow implies maximum efficiency

a+b+c+d k a+b+c k
a, ka Consider eff 4 — eff 3 = + 2 — + 2
Ky 2x+kd Ky 2x+kb

At X _d 2(d—c)(3a+b+c+d)
AN ki (a+b+3c+d)(a+b+c+3d)

N
= ((6a*c-5a*d+8abc-6abd+8ac* +4acd-4ad +
2b%c-b*d+4bc* +4bed+2¢ +5¢ d+8cd + )/
c+d, x b+d, x ((a+b+c+d)(a+b+3c+d)(a+b+c+3d)))

d, kd
>0
When x= k*(a+b+c+d)/d

Therefore, eff 4 > eff 1, eff 4 > eff 2, eff 4 > eff 3 for all positive real number x.

Meaning that maximum flow implies maximum efficiency.

. Results
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4. Maximum flow implies maximum efficiency

Theorem: Consider a graph B, 4%+ Which obeys the following constraints.
e ¢c(LLO)za+b,c(l.2,0)zc+d, c(LL4k+1)=a+c and ¢(2.1,4k+1)=b+d
e #1,1L0)=£1.2,0)=¢(1,1,4k+1)=12.1.4k+1)=0
o c(LLdm+1)=c(1.2.4m+2)=c(2,2,4m+3)=c(2,1,4m+4)=a when m=12,....k—1
o 4k+1 when m=12,....k—1
o c(2.L4m+1D)=c(l.LLdm+2)=c(1.2.4m+3)=c(2,2,4m+4)=c when m=12,....k—
o (2.2 4m+1D)=c(2.1.4m+2)=c(1.1.4m+3)=c(1.2.4m+4)=d when m=12,....k
o LLm)=161L2,m)=2,621m)=3.12.2.m)=4 ge m=12,....k—1
when k,a.b,c,de R and a<b<c<d.
Then the solution which gives maximum flow also gives maximum efficiency. ' Results
(a,1) (c,1)

(d,1) (b,1)




max‘f|:M:a+b+c+d

min(7'(f)) =t =4k
eﬁ’:ﬂOWJr t

M time

(a,1]

4. Maximum flow implies maximum efficiency

(b,1)

Again, we classify the flow into 7 cases, as shown in the following table.

.\o
(.0
.Am

time flow max(eff) of that case

! 16 a+b+c+d >
4

2 15,14 a+b+d 3(J+4+§

4a+6 4

4a+6 13

4 12 a+b+c 3a+3+i

da+6 12

5 11,10 ate 2a+2 4

4a+6 10

6 9,8,7 b a+l +i

da+6 7

7 6,5,4 a a_
da+6
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4. Maximum flow implies maximum efficiency

We can classify these cases further into 4 types relative to the number of paths used.
Type 1: 1
Type 2: 2,3,4
Type 3: 5
Type 4: 6,7

For a— In type 1, we get lim =1.
asz M

. flow 3

In e 2, we get lim =—.
typ g ==
. flow 1

In type 3, we cet lim =—.
typ g M 2
. flow 1

In e 4, we get lim =—.
typ g M a

5
Observe that in type 1, the pattern 1 gives the most eff , which is equal to;.

13
In type 2, the pattern 4 cives the most eff , which is equal to lim eff, = o
a—»o

9
In type 3, the pattern 5 gives the most eff , which is equal to lim eff; = o
a5

a—=

5
In type 4, the pattern 7 cives the most eff , which is equal to lim eff;, = T

Therefore, the flow pattern which gives the most eff is pattern 7, which is also the maximum flow

pattern. Also, the flow with (mm(7( f)) ) cives the second most efficiency.

(=0}

.Am

‘ Results




Further improvement

1. Finding sharper lower and upper bound

2. Coding of program to extend the result of “maximum flow implies

maximum efficiency”

3. Finding an explicit algorithm on finding maximume-efficiency flow on Bm’n

4. Implementation of the study into more real situations

. Results
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