Федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский национальный исследовательский технологический университет» Институт развития непрерывного образования «Лицей-интернат для одаренных детей с углубленным изучением химии»

Ремонтный комплект для герметизации в полевых условиях ПАО «Газпром»

Кузнецов Никита Георгеивич



Шарипов Раиль Робертович

Выполнили: ученики 10 «Б» класса ЛИ ФГБОУ ВО «КНИТУ» Руководитель д.х.н профессор кафедры тпм КНИТУ, гендиректор ООО «Олепластика» Ключников Олег Романович

Актуальность

Гуммирование предметов

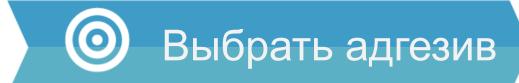
Ремонт запорной арматуры

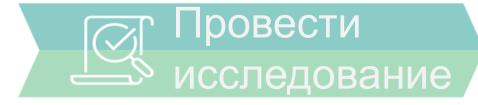
В наше время одна из важнейших проблем стоит в сфере проведения ремонта или гидроизоляции и электроизоляции в полевых условиях, а так же для ремонта:

Примеры применения

- Наш ремонтный комплект можно применять для:
 - Уплотнения разных типов задвижек
 - Ремонта трубопроводных систем

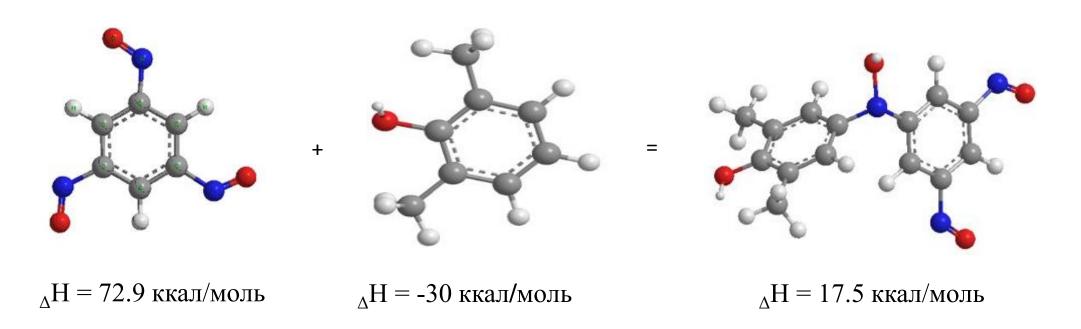
Замена прокладки в циркуляционном насосе


Замена прокладки в тэне водогрейного котла

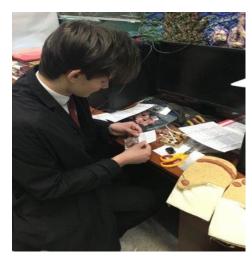


Замена прокладки в запорной арматуре.

Цель и задачи



Цель нашего исследования - подобрать адгезив типа резина-субстрат к отверждаемому в резину пластилин (ОРП) □ Для выполнения данной цели нам необходимо выполнить следующие задачи:


Квантово-химические расчеты

Результаты квантово-химических расчетов теплоты модельной реакции проводились по уравнению:

$$_{\Delta}$$
Н $_{p\text{-ии}}$ = $_{\Delta}$ н $_{\text{исходных пр.}}$ - $_{\Delta}$ Н $_{\text{конечных.}}$; $Q_{\text{х.p}}$ = 24.4 ккал/моль, реакция экзотермическая

Экспериментальная часть

Процесс создания первых рабочих комплектов

Разработка переносного комплекта на основе излучателя светлого типа ГИИ-1,15

испытание по методике: ГОСТ 209-75

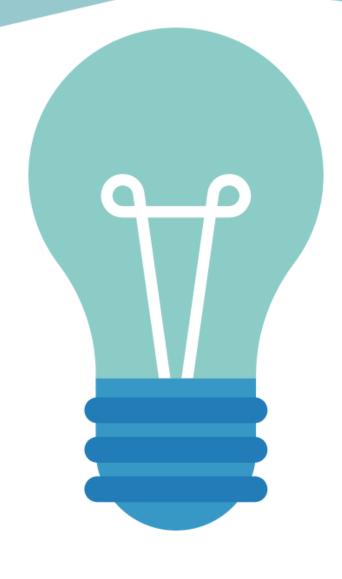
В ходе экспериментальной части

- Провели испытания на адгезионную прочность
- Создали и испытали первого прототипа ИКизлучателя светлого типа
- Подготовили рабочую партию ремонтных комплектов

Причина адгезии и исследования адгезии ОРП к материалам

Материалы	Ст.20	Алюминий	Стекло	ПВХ	Поликар- бонат	АВС-пластик
Адгезионная прочность, Мпа	2.3	2.5	2.5	2.3	2.4	2.0
Разрушение	95%	90%	100%	50%	90%	50%
Характер	когезионный	когезионный	когезионный	когезионный	когезионный	когезионный

Хорошая адгезия объясняется нами взаимодействием ТНБ как с ФФС, так и с непредельным каучуком(СКИ-3), что привело к образованию двух новых, прочных σ-связей.


Преимущества и недостатки

Так же помимо плюсов у данного продукта есть ряд небольших ограничений:

- Рабочий интервал температур эксплуатации от -55 до +110 °C, что уступает силиконовым герметикам (+200 °C);
- Р Время жизни перемешанной композиции при 25 °C 12 часов.
- Требует небольшого нагрева и предварительного перемешивания вручную.

Основные результаты и выводы

Разработан

Разработан адгезив для крепления ОРП к металлам (Fe, Al), стеклу и пластикам на основе ФФС.

Протестирован

Были проведены все необходимые исследование на адгезионную прочность составов ОРП к стали, алюминию, стеклу, пластику.

Предложен

Предложен новый механизм реакции присоединения ТНБ к ФФС

Проведен

Проведения полевых испытаний на площадке ПАО «Газпром»