СУНЦ МГУ имени М.В. Ломоносова

Изучение комплексообразования в системах галогенид — галоген

Курсовая работа ученицы 10 "Н" Селивановой С.В.. Научный руководитель: доцент СУНЦ МГУ, к.х.н. Н.И. Морозова

Введение

Известно, что иод в избытке иодида калия образует комплексный анион $[I_3^-]$ [1]. Его образование сопровождается окрашиванием раствора в красно-коричневый цвет. Протекание данной реакции существенно повышает растворимость иода в воде и других полярных растворителях, т.к. иод — неполярное вещество, а образующийся комплекс — ионное соединение. Аптечная иодная настойка содержит иодид калия (около 1%) [2] именно для улучшения растворимости иода.

Цель данной работы состоит в определении количественных параметров аналогичных реакций иода с другими галогенидами, а также спектральных характеристик продуктов.

Задачи работы:

- 1. Получить полигалогенидные комплексы M[I(Hal₂)] либо M[Hal(Hal'₂)].
- 2. Измерить оптические спектры водных растворов иода и полигалогенидных комплексов либо определить оптическую плотность с помощью датчиков для разных длин волн.
- 3. Оценить коэффициенты светопоглощения иода и комплексов при выбранных длинах волн.
- 4. Оценить константы устойчивости комплексов на основании зависимостей оптической плотности на выбранной длине волны от концентрации галогенида.

Литературный обзор

Комплексные соединения галогенов

Существует множество комплексных соединений. **Комплексные соединения** (или координационные соединения) – вещества, содержащие частицы (нейтральные молекулы или ионы), которые образуются в результате присоединения к данному иону (или атому) нейтральных молекул или других ионов. **Лиганды** (от лат ligo – «связываю») – нейтральные молекулы, ионы или радикалы, связанные с центральным атомом комплексного соединения, часто являющиеся донорами электронов. **Комплексообразователь** – это центральный атом комплексного соединения, с которым связаны лиганды, обычно он является акцептором (принимает электроны) [3].

При образовании комплекса между комплексообразователем и лигандами возникает донорно-акцепторная, или координационная, связь. Комплекс может быть электронейтральным, или неэлектролитом, иметь положительный заряд (комплексный катион) или отрицательный (комплексный анион). В случае образования комплексного соединения с одноименными лигандами все связи в комплексе равноценны, если он находится в растворе или газовой фазе, а в случае разнородных лигандов характер связи зависит от их свойств [3].

Известны такие комплексы, в которых комплексообразователем и лигандом являются галогены. Такие комплексы называются полигалогениды или анион-галогенаты [1, 2]. Комплексообразователь в них — чаще всего иод или бром, лиганды — те же или другие галогены. Примеры: $[I(I)_2]^{-}$, $[I(BrCl)]^{-}$, $NO_2[BrF_4]$, $N(CH_3)_4[I(I_2)_2]$. Как правило, лигандами могут быть не более двух различных галогенов. Иод и отчасти бром могут образовывать анионы, содержащие до девяти атомов галогена, например, $[I_5]^{-}$, $[I_7]^{-}$, $[I_9]^{-}$, $[I_8]^{2-}$, а также цепочечные полииодид-ионы [2].

Галогены образуют между собой много соединений в парных комбинациях, которые могут быть нейтральными или ионными, например BrCl, IF₅, Br₃⁺, I₃⁻. Тройные сочетания встречаются лишь в полигалогенид-ионах, таких, как IBrCl⁻[4].

Бледно-желтый трииодид-ион образуется при растворении I₂ в водном растворе KI:

$$KI + I_2 = K[I(I)_2][1].$$

Существует много солей, содержащих трииодид I_3 . Также трииодил-ион может образовываться при самоионизации иода, которой приписывается электрическая проводимость расплавов иода:

$$3I_2 \implies I_3^+ I_3^- [4].$$

Другие тригалогенид-ионы обычно менее устойчивы в водных растворах, но их можно получить в растворах CH₃OH или CH₃CN, а также в виде кристаллических солей с

большими катионами, таких, как Cs⁺ и другие. Так, трихлорид-ион образуется только в концентрированных растворах:

$$Cl^{-}$$
 (гидр.) + $Cl_2 \longrightarrow Cl_3^{-}$ (гидр.).

Константа устойчивости трихлорид-иона ~ 0,2 [4].

Константа устойчивости — это константа равновесия образования комплекса, так как комплекс образуется путём ступенчатого присоединения лигандов к комплексообразователю [1, 3]. Константа равновесия — это отношение произведения равновесных концентраций продуктов реакции, взятых в степени их стехиометрических коэффициентов к произведению равновесных концентраций исходных веществ, взятых в степени их стехиометрических коэффициентов.

Состав полигалогенидов $M[\Im\Gamma'_x\Gamma''_y]$, где M – малозарядный крупный катион, например, катион щелочного металла или аммония; \Im – галоген-комплексообразователь (атом или молекула), обычно имеющий невысокую электроотрицательность (иод, бром, реже хлор); Γ' и Γ'' – галогенидные лиганды.

Степень окисления комплексообразователя в анион-галогенатах может быть положительной, например, в $[I^{3+}Cl_4]^-$, нулевой – как в $[(I_2)^0(I_3)_2]^{2-}$, отрицательной в $[\Gamma^{-1}(I_2)_2]^-$.

Анион-галогенаты подразделяются на две большие группы:

- изополигалогенаты (когда комплексообразователь и галогенидные лиганды представлены одним галогеном). Например, дииодоиодат (I) цезия и дибромобромат (I) рубидия $Cs[I(I)_2]$ и $Rb[Br(Br)_2]$ [5];
- гетерополигалогенаты (когда комплексообразователь и галогенидные лиганды представлены разными галогенами). Например, хлоробромоиодат (I) цезия Cs[I(Br)(Cl)], тетрахлороиодат (III) аммония $NH_4[ICl_4]$, фторотрихлороиодат (III) цезия $Cs[I(Cl_3F)]$ и бромоиодоиодат (I) цезия Cs[I(I)(Br)] [5].

Анион-галогенаты получают при взаимодействии в растворе солей-галогенидов с галогенами или межгалогенными соединениями:

$$CsCl + IBr = Cs[I(Br)(Cl)];$$

 $2RbCl + I_2Cl_6 = 2Rb[ICl_4]$ [1].

Анион-галогенаты при нагревании легко разлагаются с выделением свободных галогенов или межгалогенных соединений и солей-галогенидов, причем в составе соли всегда оказывается самый электроотрицательный из галогенов:

Rb[IBr₂] (T) = RbBr (T) + IBr (
$$\Gamma$$
)
K[I(I)₂] (T) = KI (T) + I₂ (Γ) [1].

Определение константы устойчивости

Кроме состава, главной характеристикой комплексных соединений является константа устойчивости.

Для определения констант устойчивости применяется большое число разнообразных методов исследования. Подавляющее большинство работ по определению констант устойчивости выполнено с применением потенциометрических методов исследования. Широко распространены также методы спектрофотометрии, колориметрии, фотоэлектроколориметрии, растворимости и некоторые другие [6].

Рассмотрим колориметрический и фотоэлектроколориметрический методы анализа.

Колориметрический анализ — визуальный метод анализа, основанный на установлении концентрации растворимого соединения по интенсивности или оттенку его окраски при взаимодействии данного вещества с каким-либо реактивом. **Фотоэлектроколориметрия** — определение количества вещества по поглощению окрашенным раствором света, пропущенного через светофильтр и измеряемого фотоэлементом [3].

Колориметрические методы используют визуальное сравнение или сравнение с помощью приборов – фотоколориметров или спектрофотометров. Сравнение производится двумя методами [7].

Первый метод [7] предусматривает сравнение степени окрашенности исследуемого раствора при определенной температуре и в определенном слое жидкости с эталонным раствором. Эталон содержит точно известное количество окрашивающего вещества при той же температуре и в том же слое жидкости. Иногда сравнение производится с дистиллированной водой. Применяется визуальный метод сравнения интенсивности окраски раствора с эталонными растворами, концентрация вещества в которых известна.

Второй метод [7] основан на доведении окраски исследуемого образца до эталонной. Растворы с помощью различных оптических приспособлений — зеркал, стекол и призм помещают в приборе таким образом, чтобы они совмещались в поле зрения исследователя. Глаз способен с высокой точностью фиксировать одинаковость окраски двух образцов. Для того, чтобы привести изучаемый раствор к эталонному, добавляют прозрачный растворитель. Потом из количества добавленного разбавителя выводят количественную характеристику концентрации красящих веществ в растворе. Такие методы применяются в визуальных колориметрах и в фотоколориметрах. Они довольно практичны, так как на них не влияют посторонние факторы — например, температура.

Фотоэлектроколориметрический метод [6, 8] более объективен по сравнению с визуальной колориметрией и может давать более точные результаты. Принцип работы

фотоэлектроколориметра следующий. Световой поток, проходя через окрашенную жидкость, частично поглощается. Остальная часть светового потока попадает на фотоэлемент, в котором возникает электрический ток, регистрирующийся при помощи амперметра. Чем больше концентрация раствора, тем больше его оптическая плотность и тем больше степень поглощения света, и, следовательно, тем меньше сила возникающего фототока.

Оптическая плотность – мера ослабления света прозрачными объектами или отражения света непрозрачными объектами [7]. Оптическая плотность вычисляется как десятичный логарифм отношения потока излучения, падающего на объект, к потоку излучения, прошедшего через него:

$$D = \lg \frac{\Phi_{in}}{\Phi_{out}}.$$

где Φ_{in} – поток излучения, падающего на объект; Φ_{out} – поток излучения, прошедшего через него.

Между оптической плотностью и концентрацией вещества в растворе существует прямая пропорциональная зависимость. Для того чтобы проводить на фотоэлектроколориметре определение количества вещества, необходимо построить градуировочную кривую (рис. 1).

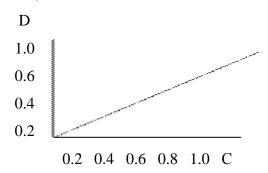


Рис. 1. Градуировочная кривая [8]. С – концентрация; D – оптическая плотность раствора

Градуировочная кривая показывает зависимость оптической плотности раствора D от количества вещества С. Для построения градуировочной кривой готовят серию стандартных растворов анализируемого вещества, охватывающую область возможных концентрации, измеряют оптические плотности всех растворов и строят градуировочную кривую, откладывая, по оси абсцисс известные концентрации, а по оси ординат — соответствующие им значения оптической плотности.

По градуировочной кривой в дальнейшем определяют концентрацию вещества в исследуемом растворе. Для этого раствор наливают в ту же кювету, для которой

построена градуировочная кривая и на той же длине волны определяют оптическую плотность раствора. Затем по градуировочной кривой находят концентрацию определяемого вещества, соответствующую данной оптической плотности. Градуировочную кривую следует время от времени проверять. Часто в работе пользуются градуировочными таблицами, которые составляются по данным градуировочной кривой.

Экспериментальная часть

Приготовление растворов

Растворимость иода составляет 0.03 г I_2 / 100 мл воды [10], или $1.18*10^{-3}$ (0.00118) моль/л. Было приготовлено 100 мл насыщенного раствора иода в воде (раствор 1), а также серии растворов, содержащих такое же количество иода и добавку галогенид иона (табл. 1).

Таблица 1. Исходные концентрации галогенидов в растворах, содержащих 0,03 г иода на 100 мл

	Растворы иода с добавкой KI	
№ раствора	2	3
Масса KI, г / концентрация KI, М	0,5 / 0,03	1,0 / 0,06
	Растворы иода с добавкой KBr	
№ раствора	4	5
Масса КВг, г / концентрация КВг, М	0,36 / 0,03	0,72 / 0,06
	Растворы иода с	добавкой KCl
№ раствора	6	7
Масса KCl, г / концентрация KCl, М	0,22 / 0,03	0,45 / 0,06

Также использовались растворы, содержащие больше иода (табл. 2). Превышение растворимости иода становится возможным, т.к. иод связывается в комплекс, и его реальная концентрация в растворе понижается.

Таблица 2. Исходные концентрации растворов с увеличенным количеством иода

№ раствора	2-1	2-2	2-3
Масса иода, г /	$0.18 / 7.09*10^{-3}$	0,10 / 3,94*10 ⁻³	0,05 / 1,97*10 ⁻³
концентрация иода, М	(0,00709)	(0,00394)	(0,00197)
Macca KI, г /	0,91 / 0,0548	0,51 / 0,031	1,00 / 0,06
концентрация KI, М			

Для приготовления растворов использовались дистиллированная вода и реактивы квалификации «хч»: иод, иодид калия, бромид калия, хлорид калия. Мерные колбы на 100 мл были вымыты и ополоснуты дистиллированной водой. Реактивы взвешивали на весах электронных учебных производства ООО «Научные развлечения» (диапазон измерения 0-200 г, точность 0,01 г) [11] в пластиковой таре, а затем помещали в мерную колбу, где к ним добавлялась вода. В некоторых случаях воду слегка подогревали для ускорения растворения. После охлаждения до комнатной температуры растворы доводили до метки.

Получение спектров

Для измерения спектров растворов использовали спектрофотометр ПЭ-5400ВИ, изготовленный ООО «Экохим» [9]. Спектральный диапазон 315-1000 нм; оптическая схема однолучевая. Для обработки спектров было использовано программное обеспечение SC5400 для сканирования по длине волны под управлением операционной системы Windows. Растворы помещали в стеклянные кюветы 10×12 мм.

Определение оптической плотности

Для определения оптической плотности на выбранных длинах волн применяли датчики оптической плотности 475 нм и 405 нм фирмы ООО «Научные развлечения». Максимум спектра испускания источника света 475 ± 5 и 405 ± 5 нм соответственно. Диапазон измерений оптической плотности от 0 до 2 ед. Время установления показаний — не более 1 с [12, 13].

Результаты и обсуждение

Визуальные наблюдения

Цвет растворов, содержащих иодид калия и иод, в зависимости от концентрации, проявляется от оранжево-коричневого (раствор иода в воде, концентрация иода 0,00118 моль/л – раствор 1) до интенсивного красно-коричневого (раствор иода и иодида калия в воде, концентрация КІ 0,0548 моль/л, концентрация I_2 0,00709 моль/л – раствор 2-1) (рис. 2).

Рис. 2. Растворы с исходными массами I₂ / KI (слева направо): 0,03/0; 0,03/0,5; 0,03/1,0; 0,05/1,0; 0,1/0,51; 0,18/0,91

Рис. 3. Раствор, содержащий 0,03 г I_2 без галогенида; растворы с массами I_2 / KCl 0,03/0,22 и 0,03/0,45; растворы с массами I_2 / KBr 0,03/0,36 и 0,03/0,72

Окраска растворов иода с добавлением других галогенидов в целом менее интенсивна, чем для иодида. Цвет растворов 4 и 6 (с малыми количествами галогенидов) практически не отличается от оранжевого цвета раствора 1 (без галогенида).

Результаты спектрофотометрии

Из спектра поглощения раствора, не содержащего галогенид (рис. 4), можно сделать вывод, что максимум пика, принадлежащего иоду, приходится на 350 нм. В присутствии иодида появляется сравнимая по интенсивности широкая полоса поглощения в области от 375 до 475 нм, которую можно отнести к трииодидному комплексу (рис. 5). В растворах с КВг и особенно с КСl аналогичная полоса менее выражена и уменьшение пика иода заметно слабее (рис. 6), что согласуется с меньшей устойчивостью комплексов, содержащих бромид и хлорид [4].

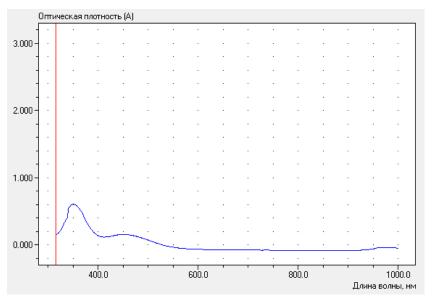


Рис. 4. Спектр поглощения раствора 0,03 г I_2 / 100 мл воды, концентрация иода 1,18*10⁻³ (0,00118) моль/л

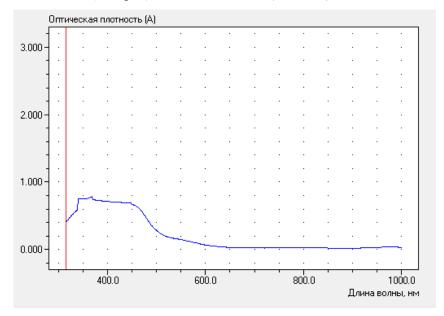
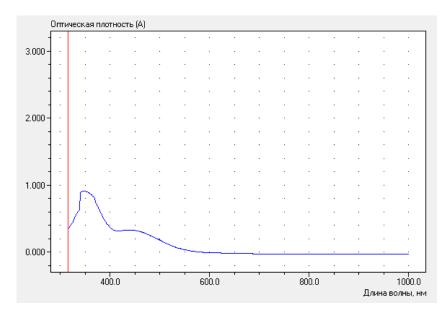



Рис. 5. Спектр поглощения раствора $0.05 \
m z \ I_2 / 1.0 \
m z \ KI$ на $100 \
m mл$ воды

 $Puc.\ 6.\ C$ пектр поглощения раствора $0,03\ z\ I_2/0,45$ гр KCl на $100\ мл$ воды

На основании спектров растворов был выделен интересующий нас интервал длин волн между 350 нм и 500 нм, и дальнейшие исследования проводились в этом интервале.

Оптическая плотность растворов

Из имеющихся в наличии датчиков оптической плотности на длинах волн 405, 475, 525 и 590 нм в интересующий интервал попали первые два. С их помощью были проведены измерения оптической плотности всех приготовленных растворов. Однако вследствие большой длины кюветы (35 мм) поглощение для некоторых растворов оказалось слишком интенсивным, и значения оптической плотности ушли за пределы измеряемого диапазона. Поэтому данные растворы были разбавлены, и концентрации полученных рабочих растворов были пересчитаны (табл. 3).

Таблица 3. Исходные концентрации иода и галогенида в рабочих растворах

№ pac	створа	$C_0(I_2)$, моль/л	C ₀ (Hal -), моль/л
1 (без	· Hal ⁻)	0,00118	0
2 (c KI)	2A	0,0001475	0,00375
	2Б	0,00059	0,015
3 (c KI)	3A	0,0001475	0,0075
	3Б	0,00059	0,03
4 (c)	KBr)	0,00118	0,03
5 (c]	KBr)	0,00059	0,03
6 (c	KCl)	0,00118	0,03
2-2 (c KI)	2-2A	0,0004875	0,003875
	2-2Б	0,0013	0,0155

2-3 (c KI)	2-3A	0,00025	0,0075
	2-3Б	0,001	0,03

Для рабочих растворов получены данные оптической плотности (табл. 4).

Таблица 4. Оптическая плотность рабочих растворов

№ раствора	D для 405 нм	D для 475 нм
1	0,95	0,5
2	1,15 (A)	0,9 (Б)
3	1,34 (A)	1,34 (Б)
4	1,64	1,05
5	0,97	0,69
6	1,76	0,81
2-2	2,09 (A)	1,73 (Б)
2-3	1,68 (A)	1,25 (Б)

Измеряемая оптическая плотность выражается формулой:

$$D = I_{\text{Kior}}[(\epsilon(I_2) * C(I_2) + \epsilon(I_3) * C(I_3)],$$

где $I_{\text{кюв}}$ — длина кюветы, $\epsilon(I_2)$ — коэффициент экстинкции иода, $C(I_2)$ — концентрация иода в растворе, $\epsilon(I_3^-)$ — коэффициент экстинкции трииодида, $C(I_3^-)$ — концентрация трииодида в растворе.

Коэффициент экстинкции иода был рассчитан на основании оптической плотности раствора, не содержащего галогенидов, по формуле

$$D = l_{\text{kiob}} * \epsilon(I_2) * C(I_2) \Longrightarrow \epsilon(I_2) = D/[l_{\text{kiob}} * C(I_2)].$$

На длине волны 405 нм коэффициент экстинкции иода равен 23 л/моль*мм, а на 475 нм – 12 л/моль*мм.

Расчет константы устойчивости трииодида

Константа устойчивости трииодидного комплекса выражается формулой:

$$K = [I_3^-]/([I_2] * [I^-]),$$

где $[I_3]$ – концентрация трииодида в растворе, $[I_2]$ – концентрация иода в растворе, $[\Gamma]$ – концентрация иодида в растворе.

Фактически это константа равновесия реакции

$$I_2 + I^- \implies I_3^-$$
.

В справочной литературе константу устойчивости для I_3 найти не удалось. Однако ее можно рассчитать по уравнению Нернста [14], зная стандартные окислительновосстановительные потенциалы полуреакций

$$I_2 + 2e = 2I$$
 $E^0(I_2) = 0,05345 B;$
 $I_3^- + 2e = 3I^ E^0(I_3^-) = 0,05355 B [10].$

Уравнение Нернста в общем виде:

$$E = E^0 + \frac{RT}{nF} \ln \frac{[Ox]}{[Red]},$$

где E — потенциал полуреакции, E^0 — стандартный потенциал полуреакции (при 298 K, 1 атм и концентрациях, равных 1 моль/л), R — универсальная газовая постоянная 8,31 Дж/К*моль, T — абсолютная температура, n — число электронов, участвующих в полуреакции, F — число Фарадея 96485 Кл/моль, [Ox] и [Red] — концентрации окисленных и восстановленных форм в степенях, равных стехиометрическим коэффициентам.

Для полуреакции

$$I_2 + 2e = 2I^-$$

при температуре 298 К оно приобретет вид

$$E(I_2) = 0.05345 + \frac{0.059}{2} lg \frac{[I_2]}{[I^*]^2}.$$

Потенциал полуреакции

$$I_{3} + 2e = 3I$$

возможно рассчитать по этому же уравнению, если вспомнить, что концентрация иода может быть выражена через константу устойчивости трииодида:

$$[I_2] = [I_3]/([I]*K).$$

Тогда

$$E(I_3^-) = 0.05345 \, + \, \frac{0.059}{2} \, lg \frac{[I_3^-]}{{[I^-]}^3 \cdot K} \, , \label{eq:energy}$$

а в стандартных условиях, когда все концентрации равны 1 моль/л:

$$E^{0}(I_{3}^{-}) = 0.05345 + \frac{0.059}{2} \lg \frac{1}{K}$$
.

С другой стороны, известно, что $E^0(I_3) = 0.05355$ В. Отсюда находим, что

-lgK =
$$\{2[E^{0}(I_{3}) - E^{0}(I_{2})]/0,059\} = 0,0001,$$

K = $10^{-0,0001} = 1,00023 \approx 1.$

Оценка констант устойчивости других галогенидных комплексов

Теперь, зная константу устойчивости трииодида и исходные концентрации иода и иодида в растворах, можно рассчитать реальные концентрации иода и трииодида. Если в 1 л раствора образуется х моль трииодидного комплекса, то расходуется по столько же моль иода и иодида, и остается $C(I_2) = C_0(I_2) - x$ моль иода и $C(KI) = C_0(KI) - x$ моль иодида (табл. 5).

№ pac	твора	$C(I_2)$	$C(I_3)$
2	A	0,000589117	5,51*10 ⁻⁷
	Б	0,000146949	8,71*10 ⁻⁶
3	A	0,00058824	1,1*10 ⁻⁶
	Б	0,0001464	1,72*10 ⁻⁵
2-2	A	0,0012866	1,88*10 ⁻⁶
	Б	0,00048562	1,33*10 ⁻⁵
2-3	A	0,000971	1,86*10 ⁻⁶
	Б	0,00024814	2,9*10 ⁻⁵

Таблица 5. Реальные концентрации иода и трииодида в рабочих растворах

Далее, исходя из уже упоминавшейся формулы

$$D = I_{\text{Kiob}}[(\epsilon(I_2) * C(I_2) + \epsilon(I_3) * C(I_3)],$$

находим коэффициенты экстинкции трииодида при разных длинах волн:

$$\varepsilon(I_3) = \frac{D/l_{\kappa lob} - \varepsilon(I_2)C(I_2)}{C(I_3^-)}.$$

Коэффициент экстинкции трииодида для $405 \,\mathrm{hm}$ составляет $22000\pm5000 \,\mathrm{n/моль*mm}$, для $475 \,\mathrm{hm} \,2300\pm500 \,\mathrm{n/моль*mm}$.

Примем, что коэффициенты экстинкции комплексов $[I_2Br]^T$ и $[I_2Cl]^T$ не превышают соответствующие коэффициенты экстинкции трииодида. Тогда, пользуясь значениями оптической плотности для растворов с этими комплексами, можно рассчитать концентрации комплексов х по уравнению

$$\begin{split} D &= l_{\text{кюв}}[(\epsilon(I_2)^*C(I_2) + \epsilon(I_3^-)^*C(\text{компл.})] = l_{\text{кюв}}[(\epsilon(I_2)^*\{C_0(I_2) - x\} + \epsilon(I_3^-)^*x], \\ x &= \frac{D/l_{\text{кюв}} - \varepsilon(I_2)C_0(I_2)}{\varepsilon(I_3^-) - \varepsilon(I_2)} \,. \end{split}$$

Приблизительные концентрации комплексов: для раствора $4-3,9*10^{-6}$ M, для раствора $5-3,0*10^{-6}$ M, для раствора $6-2,5*10^{-6}$ M.

Далее рассчитываем константы равновесия реакций

$$I_2 + Hal^- \longrightarrow I_2Hal^-$$

$$K = [I_2Hal^-]/([I_2]*[Hal^-]) = x/\{(C_0(I_2) - x)(C_0(Hal^-) - x)\}.$$

Полученное значение $K(I_2Br^-)$ составляет 0,14, а $K(I_2Cl^-)$ 0,07. Разумеется, эти значения являются оценочными (оценка снизу), т.к. точные значения коэффициентов экстинкции для указанных комплексов не определены.

Выводы

- 1. Рассчитана константа устойчивости для трииодид-иона $K([I_3]) \approx 1$ (на основании окислительно-восстановительных потенциалов).
- 2. Определены коэффициенты экстинкции для I_2 : на 405 нм 23 л/моль*мм, на 475 нм 12 л/моль*мм; и для $[I_3]^-$: на 405 нм 22000 ± 5000 л/моль*мм, на 475 нм 2300 ± 500 л/моль*мм.
- 3. Оценены минимальные значения констант устойчивости: $K([I_2Br]^{-}) > 0,14$ и $K([I_2Cl]^{-}) > 0,07$.

Литература

- 1. Лидин Р.А., Молочко В.А., Андреева Л.Л. Химические свойства неорганических веществ: Учебное пособие для вузов. М.: Химия, 1996 (1-е изд.), 1997 (2-е изд.), 480 с.
 - 2. Махнач В. О. Иод и проблемы жизни. Л.: Hayka, 1974. 254 c.
- 3. Химическая энциклопедия. В 5 т.: т. 2: Даффа-Меди / Редкол.: Кнунянц И.Л. (гл. ред.) и др. М.: Сов. энцикл., 1990, 672 с.
- 4. Коттон Ф., Уилкинсон Дж. Основы неорганической химии. М: Мир, 1979, 679 с.
 - 5. Бозорт Р. Ферромагнетизм. М.: Иностранная литература, 1956, с. 784.
- 6. Васильев В.П. Термодинамические свойства растворов электролитов: Учебное пособие. – М.: Высшая школа, 1982, 321 с.
- 7. Капорский Л.Н. Оптическая плотность. Физическая энциклопедия. / Ред. Прохоров А.М. . М.: Большая Российская энциклопедия, 1992. Т. 3. Магнитоплазменный компрессор Пойнтинга теорема. 672 с.
- 8. Булатов М.И., Калинкин И.П. Практическое руководство по фотометрическим методам анализа: изд 5-е, перераб. . Л.: Химия, 1986, 432 с.
- 9. ООО «Экрос группа компаний». Спектрофотометр ПЭ-5400ВИ. Руководство по эксплуатации. Паспорт БКРЕ.941412.001-01РЭ. Санкт-Петербург, 2013, 34 с.
- 10. Лурье Ю.Ю. Справочник по аналитической химии: изд 6-е, переработанное и дополненное. М.: Химия, 1989, 448 с.
 - 11. ООО «Научные развлечения». Весы электронные учебные. Паспорт.
- 12. ООО «Научные развлечения». Цифровой датчик оптической плотности 475 нм. Паспорт.
- 13. ООО «Научные развлечения». Цифровой датчик оптической плотности 405 нм. Паспорт.
- 14. Коренев Ю.М., Морозова Н.И. Общая и неорганическая химия. Часть V. Окислительно-восстановительные реакции. М: МАКС Пресс, 2011, 76 с.