Regatta

Senior League

First Round

- 1a. Numbers $\sin(17^\circ)$ and $\sin(73^\circ)$ are roots of the quadratic trinomial $ax^2 + bx + c$. Prove that $a^2 + 2ac = b^2$.
- **1g.** AD is a diameter of the circumcircle of the quadrilateral ABCD. Point E is symmetric to the point A with respect to the midpoint of BC. Prove that $DE \perp BC$.
- 1c. Sasha marked some cells of a table 8×13 so that there was and odd number of marked cells in every square 2×2 . After that, he marked some more cells so that there was an even number of marked cells in every square 2×2 . What is the minimum possible total number of marked cells?

Second Round

2a. Prove that for every positive integer n the value of the expression

$$\left[\frac{n}{1}\right] + \left[\frac{n}{2}\right] + \ldots + \left[\frac{n}{n}\right] + \left[\sqrt{n}\right]$$

is even.

- **2g.** Incenter I of the acute triangle ABC lies on the bisector of an acute angle between the altitudes AA_1 and CC_1 . Bisector of the angle B intersects the opposite side of the triangle at the point L. Prove that points A_1 , I, L, C lie on one circle.
- **2c.** Numbers from 1 to 50 are written on 50 cards, each number appears once. Kostya and Vitalik take turns at picking a card, until all cards are picked. Kostya moves first and wants a total sum of numbers on his cards to be divisible by 25. Vitalik wants to thwart him. Will Kostya be able to achieve his goal?

Third Round

- **3a.** Find the largest positive integer n such that for every its prime divisor p number n is divisible by p 1, but not by p^2 .
- **3g.** Given point P inside the triangle ABC such that points symmetrical to P with respect to the midpoint of BC and to the bisector of angle A lie on one line with the point A. Prove that projections of the point P on the sides AB and AC are equidistant from the midpoint of BC.

3c. A country has 100 cities. It is required to connect some pairs of cities with flights so that every city will be reachable from every other with a sequence of flights, and for every four cities A, B, C, D for which there are flights AB, BC, CD, there will also be AD. How many ways there are to connect the cities?

Fourth Round

4a. Prove that

/	1962	1963	1965	2017	1963
V	$\overline{2018} <$	$\overline{1964}$.	$\overline{1966}$ \cdots	$\overline{2018} < $	$\overline{2019}$.

- 4g. Point L on the bisector of the angle A of the triangle ABC is such that $\angle LBC = \angle LCA = \angle LAB$. Prove that the lengths of the sides of the triangle form a geometric progression.
- 4c. Either "+" or "-" is written in each cell of a table 2017×2017 . In one move it is allowed to alter every sign in a chosen cross (cross is a union of a column and a row). Is it possible to obtain the table with "+" in its every cell for any initial placement of signs (after an arbitrary number of moves)?