Вариант 1.

- 1. Тяжёлый металлический шар с полостью внутри весит в воздухе $P_1=528H$, а в воде $P_2=442H$. Какой объём полости внутри шара? Считайте, что плотность материала шара равна $\rho=8800 \frac{\mathrm{KT}}{\mathrm{M}^3}$, плотность воды $\rho_0=1000 \frac{\mathrm{KT}}{\mathrm{M}^3}$.
- 2. Санки массой m=6кг начинают съезжать со снежной горки, у которой угол наклона к горизонту равен α =30 0 . Пройдя по склону путь S=40м, сани приобрели скорость $v=10\frac{\mathrm{M}}{\mathrm{c}}$. Вычислите количество теплоты, которое выделилось при трении полозьев о снег.
- 3. Истребитель совершает в вертикальной плоскости «мёртвую» петлю радиусом R=250м. В кабине сидит пилот массой m=80кг. Найдите скорость самолёта v, если в нижней точке петли лётчик давит на сидение кресла самолёта с силой F=8000H.
- 4. Если к бруску массой m=20кг, находящемуся на горизонтальной поверхности, приложить силу F=200H, направленную вниз под углом α к горизонту, то он будет двигаться равномерно. С каким ускорением будет двигаться тот же брусок, если приложить к нему эту силу, но направленную вверх под тем же углом α к горизонту? Считайте, что $\sin \alpha = 0.6$, а брусок в обоих случаях движется поступательно.
- 5. Улитка ползёт по минутной стрелке башенных часов Главного здания МГУ, двигаясь равнозамедленно относительно неё по направлению к центру часов. Ровно в 12:37 она находилась на расстоянии $r_1=360$ см от центра, а ровно в 12:52 она останавливается относительно стрелки, не доходя до центра. Модуль перемещения улитки относительно башни оказывается равным $\Delta r=450$ см. В системе отсчёта, связанной со стрелкой, найдите путь улитки S, а также её среднюю скорость v за указанный промежуток времени.

Калькулятором не пользоваться! При расчётах принять $g \approx 10$ M/ $_{c^2}$; $\sqrt{2} \approx 1.4$; $\sqrt{3} \approx 1.7$.

Вариант 2.

- 1. Сосуд заполнен двумя несмешивающимися жидкостями, плотности которых $ho_1=700 rac{\mathrm{K}\Gamma}{\mathrm{M}^3}$ и $ho_2=1000 rac{\mathrm{K}\Gamma}{\mathrm{M}^3}$. На границе раздела жидкостей плавает однородный кубик с длиной ребра а=10см. Найдите глубину погружения x куба в жидкость с плотностью ho_2 . Плотность материала куба равна $ho=760 rac{\mathrm{K}\Gamma}{\mathrm{M}^3}$.
- 2. Камень брошен с Земли под углом α = 30^{0} к горизонту. Его кинетическая энергия в наивысшей точке траектории равна $E_{0}=45$ Дж. Чему равна его потенциальная энергия в этот же момент? Сопротивление воздуха не учитывать.
- 3. Диск равномерно вращается в горизонтальной плоскости с частотой $\omega = 240^{\ pad}/_{\ MИH}$. Ось вращения проходит через его центр. На расстоянии R=20см от оси лежит тело. Каким должен быть коэффициент трения μ между телом и поверхностью диска, чтобы оно не было сброшено в результате вращения?
- 4. Два груза массами М=6кг и m=4кг подвешены к концам невесомой нерастяжимой нити, перекинутой через блок. Меньший груз находится на h=2м ниже тяжёлого. Если освободить грузы и предоставить им двигаться под действием силы тяжести, то через какое время они окажутся на одинаковой высоте? Трение не учитывать.
- 5. На столе стоит виниловый проигрыватель, в котором вращается пластинка, совершая $\nu=45$ оборотов в 1 минуту. На пластинке на расстоянии $\frac{3}{4}R$ от её центра в точке А сидит муха. Муха начинает прямолинейно и равноускоренно относительно пластинки ползти вдоль её радиуса. В то время как пластинка успевает сделать $n=\frac{3}{4}$ оборота, муха оказывается на краю пластинки в точке В на расстоянии R=16см от её центра. Найдите модуль вектора перемещения Δr мухи относительно стола, а также её ускорение a относительно пластинки.

Калькулятором не пользоваться! При расчётах принять $g \approx 10^{\rm M}/_{c^2}$; $\sqrt{2} \approx 1.4$; $\sqrt{3} \approx 1.7$.

зариант 3.

- Снизу вверх вдоль наклонной плоскости запустили шарик. В итоге на расстоянии $S=40 {
 m cm}$ от округлите до сотых. Считая, что ускорение шарика постоянно, найдите это ускорение и начальную скорость. Ответ начальной точки шарик побывал дважды — спустя время $t_1=2 {
 m c} \ {
 m i} \ t_2=3 {
 m c}$, считая от начала движения.
- Коробка, имеющая форму параллелепипеда, массой m=100г и размерами a=5cм, b=10cм, c=10cм $ho_0=1000rac{
 m KT}{
 m M^3}$, плотность материала шарика $ho=3000rac{
 m KT}{
 m M^3}$. Найдите, исходя из этих данных, массу шарика М герметично закрыта и плавает на поверхности воды. Снизу к коробке подвесили металлический шарик. При этом она полностью погрузилась в воду, но продолжила плавать в ней. Плотность воды
- Граната брошена с поверхности земли с начальной скоростью $v_0=5\,{}^{
 m M}/{}_{
 m C}$ под углом $lpha=45^0\,{}_{
 m K}$ направлении движения гранаты, а третий имеет массу m. Найдите расстояние S между вторым и осколок массой 2m остановился, второй массой 3m полетел горизонтально со скоростью $v=v_0\sqrt{2}$ в горизонту. В верхней точке траектории она разбилась на три осколка. Сразу же после этого первый третьим осколком после их падения на землю.
- 4. Маленький грузик массой $m=0.1 {
 m Kr}$, подвешенный на лёгком резиновом шнуре, движется по окружности в горизонтальной плоскости. При таком равномерном вращении шнур составляет с вертикалью угол $lpha=60^{0}$. Найдите длину l_0 нерастянутого шнура, если его коэффициент упругости k=
- 5. 50м развило скорость от нуля до $\,v=10^{
 m \,M}/_{
 m C}$. Каков коэффициент трения тела о поверхность земли? Тело массой m=10кг под действием постоянной горизонтальной силы тяги $F=30{
 m H}$, на пути S

Калькулятором не пользоваться! При расчётах принять $m g pprox 10^{M}/c_{2}$; $m \sqrt{2} pprox 1,4$; $m \sqrt{3} pprox 1,7$.

Вариант 4.

- **1.** Монета падает с верхней точки башни без начальной скорости. При этом за последние $\Delta t=2$ секунды своего движения она пролетает S=140 метров. Сопротивление воздуха не учитывается. Какова высота H башни?
- 2. В ёмкость, имеющую форму куба, доверху налили воду. Ребро куба известно и равно a=10см, плотность воды $\rho=1000\,{}^{\rm K\Gamma}\!/_{\rm M}{}^3$. Найдите силу давления воды на одну из боковых граней куба.
- 3. Граната, брошенная с поверхности земли с начальной скоростью v_0 под углом $\alpha=45^0$ к горизонту, в верхней точке траектории разбилась на три осколка. Сразу же после этого первый осколок массой 2m остановился, а остальные полетели горизонтально в одном направлении, причём второй осколок массой 3m имел скорость в n=3 раза меньшую, чем третий осколок массой m. Найдите v_0 , если второй и третий осколки упали на землю на расстоянии S=2,5м друг от друга.
- 4. Маленький груз подвешен на нерастяжимой нити. Его масса равна m=3кг. Нить отклонили от вертикального положения на угол $\alpha=60^{0}$. Каково натяжение нити T в момент, когда грузик будет проходить через положение равновесия.
- 5. Кот, масса которого m=5кг, бежит по длинной доске с ускорением относительно неё $a_0=1\,^{\rm M}/_{\rm C^2}$. Доска при этом имеет массу M=20кг и лежит на гладком горизонтальном полу. С каким ускорением a доска движется относительно пола?

Калькулятором не пользоваться! При расчётах принять $g \approx 10^{\rm M}/_{c^2}$; $\sqrt{2} \approx 1.4$; $\sqrt{3} \approx 1.7$.

Вариант 5.

- 1. В сосуд с водой, имеющий форму прямоугольного параллелепипеда, бросили кусок льда, в который был вморожен осколок стекла. При этом уровень воды поднялся на высоту H=22мм, а сама льдинка начала плавать, полностью погрузившись в воду. Что будет происходить с уровнем воды в сосуде по мере таяния льда? На сколько изменится высота уровня воды Δh за всё время таяния? При расчётах учесть, что $\rho_0=1000\,{}^{\rm K\Gamma}/_{\rm M}{}^3$ плотность воды; $\rho=900\,{}^{\rm K\Gamma}/_{\rm M}{}^3$ плотность льда; $\rho_{\rm c}=2000\,{}^{\rm K\Gamma}/_{\rm M}{}^3$ плотность стекла.
- 2. Лёгкую упругую пружину установили вертикально и устойчиво прикрепили к полу. Когда сверху на неё аккуратно положили груз пружина сжалась на $\Delta x = 4$ см. Затем стали медленно надавливать на груз в вертикальном направлении, совершив в результате работу A = 0.3 Дж. При этом деформация пружины увеличилась на 50%. Найдите жёсткость пружины k.
- 3. Машина заезжает на ветхий мост. Он способен выдержать максимальную нагрузку в F=36000 Н. Сам мост имеет форму выпуклой дуги окружности диаметром D=200 м. Учитывая, что масса машины равна m=4000 кг, определите её минимальную скорость v для безопасного проезда через этот мост. Известно, что машина сильнее всего давит на мост в верхней его точке.
- 4. Школьники зимой катались на коньках по гладкому льду. Петя слепил большой снежный ком массой m=1,5 кг и, стоя на коньках, бросил его в друга, но промахнулся. Ком пролетел расстояние l=20м и упал на лёд спустя t=2с. С какой скоростью после броска покатился по льду сам Петя, учитывая, что его масса M=60кг?
- 5. Букашка медленно ползёт по минутной стрелке башенных часов Главного здания МГУ, двигаясь равнозамедленно относительно неё по направлению от центра часов. Ровно в 9:12 она находится на расстоянии $r_1=150$ см от центра, а ровно в 9:27 она останавливается относительно стрелки, не доходя до её края. В системе отсчёта, связанной со стрелкой, скорость букашки за 7,5 минут до остановки $v=14\,{}^{\rm CM}/_{\rm MИH}$. Найдите путь букашки S в этой системе отсчёта и модуль её перемещения Δr относительно башни.

Калькулятором не пользоваться! При расчётах принять $g \approx 10^{\text{ M}}/c^2$; $\sqrt{2} \approx 1.4$; $\sqrt{3} \approx 1.7$.

Письменный экзамен по физике в СУНЦ МГУ для поступающих в 10 класс. 2017 год Вариант 6.

- 1. Первую половину времени движения из пункта А в пункт Б поезд двигался со скоростью v_1 =40 км/ч, а первую половину оставшегося пути со скоростью v_2 =60 км/ч. Определите, с какой скоростью v_3 двигался поезд на оставшемся участке пути до пункта Б, если его средняя скорость v на всем пути равна 50 км/ч.
- 2. Тело соскальзывает с гладкой горки. У подножия горки тело плавно переходит в скольжение по горизонтальному столу, проходя при торможении расстояние S=4,5 м до полной остановки. Какую скорость v_0 вдоль горки нужно сообщить телу, находящемуся на первоначальной высоте, чтобы при торможении оно прошло путь 2S? Коэффициент трения между столом и телом равен $\mu=0,1$.
- 3. Вася сказал Маше, что равномерно крутит ведро, внутри которого лежит кочан капусты, так, что он покоится относительно ведра и описывает окружность, лежащую, как и его рука, в вертикальной плоскости. По его словам, максимальный вес капусты при этом равен 45 H. Определите, возможно ли это, если масса кочана m=3 кг. Ответ обосновать.
- 4. Два одинаковых по размерам упругих шара движутся навстречу друг другу, причём скорость более тяжёлого в n=4 раза превышает скорость другого. После центрального удара более массивный шар остановился. Каково отношение масс шаров?
- 5. Жук заползает на колесо движущегося с равномерной скоростью трактора в точке соприкосновения колеса с землей. Начальная скорость жука относительно колеса в этой точке равна нулю. В этот же момент он начинает прямолинейно с ускорением a=3,2 см/c2 относительно колеса ползти вдоль его диаметра. Когда жук доползает до противоположного конца колеса, оно успевает повернуться на n = 5 $\frac{1}{4}$ оборота, а модуль перемещения жука относительно корпуса трактора Δr =1,12 м. Найдите радиус колеса и количество оборотов, совершаемое им за 1 с.

Калькулятором не пользоваться! При расчётах принять ${\bf g}\approx {\bf 10}$ м/ ${\bf c}^{\bf 2}$, $\sqrt{2}\approx {\bf 1,4}$; $\sqrt{3}\approx {\bf 1,7}$.

Письменный экзамен по физике в СУНЦ МГУ для поступающих в 10 класс

2017 год

Вариант 7.

- 1. В первую половину пути из пункта A в пункт B мотоциклист двигался с некоторой скоростью v_1 , в первую треть оставшегося времени со скоростью v_2 =100 км/ч, а на оставшемся участке пути до пункта B со скоростью v_3 =40 км/ч. Определите скорость v_1 , если его средняя скорость v на всем пути равна 60 км/ч.
- 2. Санки соскальзывают без начальной скорости с высоты H_0 = 4,2 м по гладкой плоской ледяной горке. У подножия горки они плавно переходят в скольжение по покрытому снегом горизонтальному участку, останавливаясь в некоторой точке А. Какую скорость v будут иметь санки, проходя точку А, если будут соскальзывать с той же горки, но с высоты H_1 =5 м? Коэффициент трения скольжения санок о снег принять постоянным.
- 3. Миша сказал Наташе, что равномерно крутит рукой ведро, на дне которого лежит груз, так, что он неподвижен относительно ведра и описывает окружность, лежащую, как и рука, в вертикальной плоскости. По его словам, отношение максимального веса груза к действующей на него силе тяжести равно 2/3. Определите, возможно ли это. Ответ обосновать.
- 4. Две вагонетки одинаковой массы m=100кг движутся вдоль прямой навстречу друг другу со скоростями $v_1=10\,$ м/с и $v_2=20\,$ м/с. При их столкновении происходит одновременное сжатие четырёх одинаковых буферных пружин жёсткости $k=80000\,$ Н/м, после чего вагонетки расходятся. Пренебрегая потерями на трение, найдите максимальную деформацию Δx каждой пружины в процессе столкновения.
- 5. Муравей заползает на колесо равномерно движущегося велосипеда и неподвижно сидит на ободе, пока не оказывается в наивысшей точке. В этот момент он начинает прямолинейно, с ускорением a=37,5 мм/с 2 относительно колеса ползти по спице, направленной строго вдоль радиуса колеса. Когда ему остается доползти 3/4 радиуса до центра, колесо успевает повернуться на n = $2\frac{1}{4}$ оборота. Найдите модуль вектора перемещения муравья относительно рамы велосипеда, а также время его движения, если колесо за время Δt =1 с поворачивается на угол α =405 0 .

Калькулятором не пользоваться! При расчётах принять g ≈ 10 м с, $\sqrt{2}$ ≈ 1,4; $\sqrt{3}$ ≈ 1,7.

Вариант 8.

- 1. Известно, что треть всего времени из пункта А в пункт В автомобиль стоял в пробках, а оставшееся время ехал со скоростью v_1 =60 км/ч. Затем из точки В автомобиль проехал до точки С расстояние, равное пути АВ, двигаясь с постоянной скоростью v_2 . Определите скорость v_2 , если его средняя скорость v на пути АС равна 40 км/ч.
- 2. Санки соскальзывают без начальной скорости с гладкой плоской ледяной горки. У подножия горки они плавно переходят в скольжение по покрытому снегом горизонтальному участку, останавливаясь на расстоянии s=8 м от подножия горки. Какую скорость v имели санки, находясь на снегу на расстоянии d=6 м от горки? Коэффициент трения скольжения санок о снег $\mu=0,1$.
- 3. Груз m=100 г равномерно крутится на нити так, что он описывает окружность радиуса R_0 =1 м, лежащую в вертикальной плоскости. Известно, что в верхней точке траектории сила натяжения нити T=0,6 H. Возможно ли равномерное движение груза в вертикальной плоскости с такой же линейной скоростью, но уже по окружности радиуса R_1 =3 м? Ответ обосновать.
- 4. Граната, брошенная под углом α =45 0 к горизонту, в верхней точке траектории разбилась на 3 осколка. Сразу же после этого первый осколок массой m остановился, а остальные полетели горизонтально в одном направлении с одинаковой по модулю скоростью. Масса второго осколка 3m, а третьего 2m. Через какое время упал на землю второй осколок, если третий упал на расстоянии s=12 м от первого.
- **5.** Ковёр-самолёт начинает подниматься вертикально вверх с Земли с ускорением $a=2\frac{M}{c^2}$, а через $t_0=10c$ после старта из него выпадает волшебная лампа. Считая сопротивление воздуха пренебрежимо малым, определите, с какой скоростью v лампа упадёт на Землю?

Калькулятором не пользоваться! При расчётах принять $g \approx 10 \, {}^{\rm M}/{}_{\rm C^2}$; $\sqrt{2} \approx 1.4$; $\sqrt{3} \approx 1.7$.

Вариант 9.

- 1. Первую половину пути из Москвы в Сергиев Посад автомобиль двигался в связи с пробками с некоторой скоростью v_1 , первую половину оставшегося времени со скоростью v_2 =70 км/ч, а вторую со скоростью v_3 =80 км/ч. Определите скорость v_1 , если средняя скорость v на всем пути равна 50 км/ч.
- 2. Тело соскальзывает с гладкой горки. У подножия горки тело плавно переходит в скольжение по горизонтальному столу, проходя при торможении путь S=9 м до полной остановки. Коэффициент трения между столом и телом равен $\mu=0,1$. Найдите скорость тела в тот момент, когда тело находилось на горке на высоте, вдвое меньшей первоначальной.
- 3. Человек равномерно крутит ведро, на дне которого лежит картофелина, так, что она неподвижна относительно ведра и описывает окружность, лежащую в вертикальной плоскости. При этом центростремительное ускорение картофелины a_n =12 м/с 2 . Будет ли картофелина неподвижной относительно ведра, если число оборотов в 1 с уменьшить в n=3 раза, а радиус окружности увеличить в m=4 раза? Ответ обосновать.
- 4. Граната брошена с начальной скоростью v_0 =6 м/с под углом α =60 0 к горизонту. В верхней точке траектории она разбилась на 3 осколка. Сразу же после этого первый осколок массой m остановился, второй массой 2m полетел горизонтально со скоростью $9v_0/4$ в направлении движения гранаты, а третий имеет массу 3m. Определите скорость третьего осколка непосредственно перед падением на землю.
- 5. С высокой крыши срывается капля и начинает свободно падать. Спустя время $\Delta t = 2c$ следом за первой с того же места начинает падать и вторая капля. Через сколько секунд после начала движения первой капли удвоится расстояние, разделяющее их, по сравнению с тем, что было к моменту начала падения второй? Сопротивление воздуха не учитывать.

Калькулятором не пользоваться! При расчётах принять $g \approx 10^{\rm M}/_{\rm C^2}$; $\sqrt{2} \approx 1.4$; $\sqrt{3} \approx 1.7$.

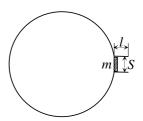
Вариант 10.

- 1. Известно, что средняя скорость автомобиля на участке пути из A в B равна v_1 =60 км/ч, а на пути из B в C он стоял в пробках 2/3 времени, а оставшееся время ехал со скоростью v_2 . Определите скорость v_2 , если его средняя скорость v_3 на пути AC равна 40 км/ч, а путь AB равен пути BC.
- 2. Санкам придают начальную горизонтальную скорость, после чего они проскальзывают по снегу путь S=6 м, а потом плавно заезжают на гладкую плоскую ледяную горку и останавливаются на высоте H=0,5 м. Определите скорость v, которую имели санки, находясь на снегу на расстоянии S/2 от подножия горки. Коэффициент трения санок о снег $\mu=0,1$.
- 3. Яблоко лежит на дне корзинки, которую Марина равномерно крутит так, что яблоко покоится относительно корзинки и описывает окружность, лежащую в вертикальной плоскости. При этом отношение минимального веса яблока к действующей на него силе тяжести α =1/5. Может ли яблоко покоится относительно корзинки, если Марина уменьшит число оборотов в n=2 раза? Ответ обосновать.
- 4. Граната, брошенная под углом α к горизонту, в верхней точке траектории разорвалась на 3 осколка. Сразу же после этого первый осколок массой m остановился, а остальные полетели горизонтально в одном направлении, причем второй осколок массой 3m имел скорость u=2 m/c, а третий имел массу 2m. Найдите α , если второй и третий осколки упали на землю на расстоянии S=25 m друг от друга через t=1 m0 после взрыва.
- **5.** Тележка, на которую действует постоянная горизонтальная сила, начала двигаться по прямой. Причём за 8-ю секунду своего движения она проехала расстояние $S=45 \,\mathrm{M}$. С каким ускорением движется эта тележка?

Калькулятором не пользоваться! При расчётах принять $g \approx 10^{\text{ M}}/_{\text{C}^2}$; $\sqrt{2} \approx 1.4$; $\sqrt{3} \approx 1.7$.

Физика 2017 для поступающих в 11 класс Вариант 1

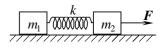
1. Диск радиусом R=20 *см* катится без проскальзывания по горизонтальной поверхности с постоянной по величине и направлению скоростью $\upsilon_0=1$ *м/с* . Найдите скорость υ и ускорение a точки M диска.


- 2. Тележка массой $M=4\,\kappa z$ движется без трения по горизонтальной по- тележко по- верхности со скоростью $v=0.5\frac{M}{c}$. На тележку плавно опускают неподвижный груз массой $m=1\,\kappa z$. Через какой промежуток времени τ тележка и груз будут двигаться с одинаковой скоростью? Коэффициент трения между тележкой и грузом $\mu=0.1$.
- 3. Из баллона со сжатым водородом ёмкостью V=10 л вследствие неисправности вентиля утекает газ. При температуре $t_1=7^{\circ}C$ манометр показывал давление $p=5\cdot 10^6$ Па. Через некоторое время при температуре $t_2=17^{\circ}C$ манометр показывал такое же давление. Какая масса газа утекла?
- 4. В некотором процессе над газом совершена работа $A'=100~\mbox{$\mathcal{D}$}$ ж, его внутренняя энергия возросла на $\Delta U=180~\mbox{$\mathcal{D}$}$ ж, а температура увеличилась на $\Delta T=20~\mbox{$K$}$. Найдите теплоёмкость газа C в этом процессе.
- 5. Имеются две проводящие концентрические сферы радиусами $r_1=10~cm$ и $r_2=20~cm$. Внутренняя сфера не заряжена, а на внешнюю помещают заряд $q=10^{-8}K\pi$. Сферы соединяют тоненьким проводником (не нарушающим сферической симметрии задачи). Найдите заряды q_1 и q_2 , которые после этого установятся соответственно на внутренней и внешней сферах.

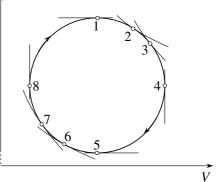
Физика 2017 для поступающих в 11 класс Вариант 2

1. Два небольших тела бросают одновременно из одной точки пространства на некоторой высоте с одинаковыми по величине скоростями $\upsilon=10\,\text{м/c}$, но в разных направлениях: одно — под углом α к горизонту, другое — под тем же углом к вертикали. Найдите расстояние s между телами (пока они находятся в полёте) через время $t=5\,c$, если векторы скоростей лежат в одной вертикальной плоскости. Сопротивлением воздуха пренебречь.

- 2. В каком случае и во сколько раз потребуется совершить бо́льшую работу: чтобы растянуть данную пружину на $x_1 = 1 \, c M$ или чтобы растянуть половину данной пружины на $x_2 = 0.5 \, c M$?
- 3. Открытая колба объёмом V=1 n находится в воздухе при нормальных условиях. Горлышко колбы имеет длину l=1 cm и сечение S=1 cm^2 . Это горлышко закрывают цилиндрической пробкой массой m=2 c, могущей скользить по нему без трения. В начальный момент пробка удерживается у основания горлышка. Воздух в колбе нагревают до t=100°C и пробку отпускают. С какой скоростью v пробка вылетит из колбы?


- 4. Имеются порция гелия, находящаяся при температуре T_1 , давлении p_1 и занимающая объём V_1 , и порция аргона с соответствующими параметрами T_2 , p_2 и V_2 . Найдите отношение их внутренних энергий, считая оба газа идеальными.
- 5. Обкладки расположенного в открытом космосе плоского конденсатора площадью $S = 100 \, cm^2$ каждая несут заряды +q и -q, где $q = 10^{-8} \, Kn$. Расстояние между ними $d = 9 \, mm$. Удерживая одну из пластин на месте, другую отпускают, и она под действием кулоновских сил устремляется по направлению к неподвижной. Какова будет величина v её скорости, когда расстояние между пластинами уменьшится в два раза? Масса каждой пластины $m = 0.5 \, c$.

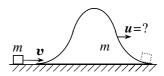
Физика 2017 для поступающих в 11 класс Вариант 3


- 1. С какой минимальной по величине скоростью υ относительно воды должен двигаться пловец, пересекая реку шириной a, чтобы его «снос» составил величину s? Скорость течения реки постоянна υ равна υ . Под «сносом» понимается расстояние между точкой, где пловец достиг противоположного берега, υ точкой, расположенной строго напротив точки отплытия.
- 2. Какую массу m балласта надо сбросить с равномерно опускающегося аэростата (воздушного шара), чтобы он начал равномерно подниматься с той же скоростью? Масса аэростата с балластом $M = 1,2 \cdot 10^3 \, \kappa z$, архимедова сила постоянна и равна $F = 8 \, \kappa H$.
- 3. Начальное давление воздуха в сосуде $p_0 = 729$ мм pm. cm. После трёх ходов откачивающего поршневого насоса оно упало до p = 216 мм pm. cm. Считая процесс изотермическим, происходящим при комнатной температуре, найдите отношение объёмов насоса ΔV и сосуда V.
- 4. Идеальный одноатомный газ, изобарно расширяясь, совершает работу A=2 Дж. Найдите увеличение ΔU его внугренней энергии.
- 5. Два одинаковых заряженных шарика, подвешенных на тонких невесомых нитях одинаковой длины, опускаются в керосин. Какова должна быть плотность ρ_{uu} материала шариков, чтобы угол между нитями при погружении не изменился? Диэлектрическая проницаемость керосина $\varepsilon = 2$, а его плотность $\rho_{\kappa} = 0.8 \ \text{г/см}^3$. Считать, что керосин заполняет всё пространство, занятое полем.

Физика 2017 для поступающих в 11 класс Вариант 4

- 1. В течение t = 20 c ракета строго вертикально поднимается с постоянным ускорением a = 0.8 g, после чего двигатели ракеты выключаются. Через какое время τ после этого ракета упадёт на землю? Сопротивлением воздуха пренебречь.
- 2. По горизонтальной плоскости под действием силы F скользят два тела массами $m_1 = 1$ κz и $m_2 = 3$ κz . Найдите растяжение x пружины, соединяющей тела, если её жёсткость k = 100 H/m, а сила F = 8 H и направлена горизонтально. Коэффициент трения между телами и плоскостью $\mu = 0,1$.

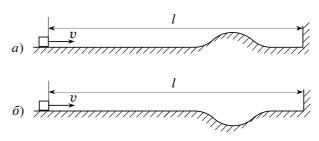
- 3. При нагревании идеального газа на $\Delta t = 150$ °C при постоянном давлении объём его увеличился в n = 1,5 раза. Найдите начальную температуру T_0 газа.
- 4. Над идеальным газом совершают процесс, приблизительно представленный на p-V диаграмме окружностью. Этой окружности в точках 1 и 5 касаются изобары, в точках 2 и 6 изотермы, в точках 3 и 7 адиабаты и в точках 4 и 8 изохоры. Известны теплоты, которыми газ в процессе цикла обменивался с окружающими телами: $Q_{12}=7\,\mathcal{J}\mathcal{M}c$, $Q_{23}=2\,\mathcal{J}\mathcal{M}c$, $Q_{34}=4\,\mathcal{J}\mathcal{M}c$, $Q_{45}=11\,\mathcal{J}\mathcal{M}c$, $Q_{56}=5\,\mathcal{J}\mathcal{M}c$, $Q_{67}=1\,\mathcal{J}\mathcal{M}c$, $Q_{78}=3\,\mathcal{J}\mathcal{M}c$ и $Q_{81}=12\,\mathcal{J}\mathcal{M}c$. Найдите кпд η цикла.


5. Уединённый проводящий шар равномерно заряжен электричеством. В центре шара потенциал созданного им поля $\phi_1 = 100\,B$, а на расстоянии $a = 30\,$ см от его поверхности — $\phi_2 = 50\,B$. Каков радиус R шара?

Физика 2017 для поступающих в 11 класс Вариант 5

1. <u>u=?</u> α

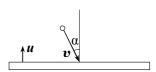
С какой минимальной скоростью u должен двигаться по горизонтальной дороге автомобиль под дождем, чтобы его заднее стекло оставалось сухим? Скорость v капель дождя вертикальна и по величине равна $10 \ \text{м/c}$, стекло наклонено к вертикали под углом $\alpha = 60^\circ$.


2. Небольшое тело массой m, скользящее со скоростью v по горизонтальной поверхности, въезжает на подвижную горку такой же массы (находящуюся в покое на той же поверхности), переваливает через её вершину и съезжает с горки с другой стороны. Найдите конечную скорость u, приобретённую горкой. Трением пренебречь.

- 3. Представьте в координатах V-T три изобары идеального газа:
- a) давление равно p, количество молей v;
- б) давление равно 2p, количество молей v;
- e) давление равно p, количество молей 2v.
- 4. Вычислите увеличение ΔU_0 внутренней энергии воды, приходящееся на одну молекулу, при её нагревании на $\Delta t = 1$ °C, если удельная теплоёмкость воды $c = 4,2 \, \mathcal{L}$ же/г-град.
- 5. Обкладки плоского конденсатора площадью $S = 100 \text{ см}^2$ каждая несут заряды +q и -q, где $q = 10^{-8} \text{ K}_{\text{Л}}$. Расстояние между ними равно $d = 0.9 \text{ м}_{\text{М}}$. Какую работу A (против кулоновых сил) необходимо совершить, чтобы медленно увеличить это расстояние в два раза?

Физика 2017 для поступающих в 11 класс Вариант 6

1. В каком случае кубик раньше стукнется о стенку? Сравните также конечные скорости кубика в случаях a) и δ) друг с другом, а также с начальной скоростью v. Трения нет. Профили поверхностей a) и δ) зеркально-симметричны относительно горизонтали. Начальная скорость достаточно велика, чтобы в случае a) кубик преодолел бугор.



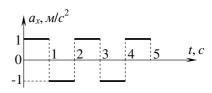
- 2. К бруску массой m=1кг, лежащему на плоской горизонтальной поверхности, прикреплена невесомая, но растяжимая упругая нить (резинка) длиной $l=18\,cm$, имеющая коэффициент жёсткости $k=120\,H/m$. За резинку тянут с постоянной горизонтальной силой $F=6\,H$. Чему равно ускорение a бруска, если коэффициент трения между бруском и плоскостью $\mu=0,5$? Каково растяжение Δl резинки?
- 3. Идеальный газ постоянной массы расширяется по закону $pV^n = const$. В каком интервале должно лежать значение n, чтобы газ при расширении нагревался?
- 4. Порция идеального одноатомного газа изобарно нагревается при давлении p от температуры T_1 до температуры T_2 . При этом возрастание внутренней энергии газа оказывается на $\delta = 10\, \text{Дж}$ больше совершённой им работы. Какое количество теплоты Q нужно сообщить этой порции, если нагревать её при давлении p/2 от температуры $2T_1$ до температуры $2T_2$?
- 5. Два проводящих шарика, радиусы которых отличаются в n=5 раз, заряжены равными одноимёнными зарядами. Во сколько раз изменится сила взаимодействия между ними, если их соединить проволокой? Расстояние между шариками много больше их размеров.

Физика 2017 для поступающих в 11 класс

Вариант 7

1. На массивную горизонтальную плиту, движущуюся вверх со скоростью u, падает шарик, летящий вниз со скоростью v, направленной под углом α к вертикали. Как должна двигаться инерциальная система отсчёта, в которой шарик после упругого столкновения с плитой остановится?

2. По горизонтальной плоскости под действием силы F = 8 H скользят два тела массами $m_1 = 1 \ \kappa 2 \ \text{и} \ m_2 = 3 \ \kappa 2$. Найдите натяжение T нити, соединяющей массы m_1 и m_2 , если коэффициент трения брусков о плоскость $\mu = 0,5$. Сила *F* и нить горизонтальны.

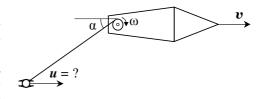


- 3. Некоторое количество водорода находится при температуре $T_1 = 200 \ K$ и давлении $p_1 = 400 \ \Pi a$. Газ нагревают до температуры $T_2 = 10^4 \ K$, при которой происходит полная диссоциация (распад на атомы) молекул водорода. Определите давление газа p_2 в конечном состоянии, если его объём не изменился.
- 4. Детский воздушный шарик, наполненный гелием, имеет объём V=3 л и находится при нормальных условиях (т. е. при атмосферном давлении и температуре $t_0 = 0$ °C). Шарик опускают на глубину h=1 м в ванну с горячей водой, имеющей температуру $t=90^{\circ}C$. Найдите количество теплоты О, полученное гелием при нагревании. Давлением, вызванным оболочкой шара, пренебречь.
- 5. В центре незаряженной проводящей тонкостенной сферы радиусом R расположен точечный заряд q. Всё пространство внугри сферы заполнено однородным диэлектриком с проницаемостью є. Снаружи — вакуум. Найдите потенциал ф сферы.

Физика 2017 для поступающих в 11 класс

Вариант 8

1. Ускорение точки, совершающей одномерное движение по оси х, в зависимости от времени представлено на графике. Сколько раз останавливалась точка в течение первых пяти секунд, если её начальная скорость равна нулю? Найдите также величину v_{cp} средней скорости точки в течение первых четырёх секунд.

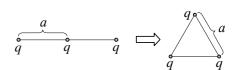


- 2. Брусок массой m кладут на наклонную плоскость, составляющую угол α с горизонтом. Коэффициент трения между бруском и плоскостью равен µ. Найдите и графически изобразите зависимость силы трения $F_{mp}(\alpha)$ при изменении α от 0 до $\pi/2$.
- 3. Баллон содержит $V_0 = 10 \, \text{м}^3$ сжатого воздуха под давлением $p = 30 \, M\Pi a$. Какой объём V воды можно вытеснить из цистерны подводной лодки воздухом из этого баллона, если лодка находится на глубине $h = 90 \, M$? Процесс считать изотермическим.
- 4. Порцию идеального одноатомного газа нагревают при постоянном давлении p от начальной температуры T_1 до промежуточной T_2 . Затем давление над газом удваивают и продолжают также изобарно его нагревать. Найдите конечную температуру T_3 газа, если теплоты, полученные им на первой и второй стадиях процесса, одинаковы.
- 5. Между пластинами плоского конденсатора ёмкостью $C_0 = n \kappa \Phi$ вводят ещё одну такую же незаряженную пластину (пренебрежимо малой толщины), располагая её параллельно обкладкам на расстоянии $\frac{d}{3}$ от одной из них (см. рисунок). Как изменится ёмкость конденсатора, если эту пластину соединить проводником с более близкой его обкладкой?

Физика 2017 для поступающих в 11 класс

<u>Вариант 9</u>

1. По озеру со скоростью $v=36~\kappa m/q$ движется катер, тянущий водного лыжника. Конец верёвки, за которую держится лыжник, наматывается на лебёдку, расположенную на катере и вращающуюся с угловой скоростью $\omega=10~c^{-1}$. Радиус барабана лебёдки r=20~cm, а угол, который верёвка составляет с направлением движения катера, $\alpha=30^\circ$. Найдите



величину u скорости лыжника, если она параллельна скорости катера. Верёвку считать невесомой и нерастяжимой.

- 2. Брусок массой m=2 κz несильно зажат между двумя вертикальными плоскостями. Удержать его от проскальзывания можно минимальной вертикальной силой $F_1=9,8$ H. Какую минимальную силу F_2 необходимо приложить к бруску, чтобы он начал подниматься вверх?
- 3. В закрытом сосуде находится некоторая масса азота при атмосферном давлении p_0 . Каким станет давление p в сосуде, если в него закачать ещё такую же массу водорода, а температуру понизить на $\varepsilon = 20\%$? Газы считать идеальными.
- 4 Идеальный одноатомный газ, изобарно расширяясь, увеличивает свою внутреннюю энергию на $\Delta U = 30 \, \text{Дж}$. Найдите полученную им при этом теплоту Q.
- 5. Внутрь плоского конденсатора ёмкостью C, пластины которого площадью S каждая несут заряды +q и -q, вносят ещё одну такую же заряженную пластину, располагая её параллельно обкладкам строго посередине между ними. Как изменится напряжение на конденсаторе, если заряд средней пластины равен Q? Краевыми эффектами пренебречь.

Физика 2017 для поступающих в 11 класс Вариант 10

- 1. Тело, двигавшееся равномерно ускоренно, прошло за первую секунду путь $S_1 = 1$ M, за вторую $S_2 = 2$ M, за третью $S_3 = 3$ M и т. д. Какова его начальная скорость υ_0 ?
- 2. С башни высотой $H=60\, m$ вертикально вниз со скоростью $v=20\, m/c$ брошено тело. На какой высоте h кинетическая энергия тела будет равна его потенциальной энергии? Сопротивлением воздуха пренебречь. Потенциальная энергия отсчитывается от основания башни.
- 3. Каким бы был коэффициент объёмного расширения α_1 идеального газа, если бы за начальный объём его принимали объём не при $t_0=0^{\circ}C$, а при $t_1=100^{\circ}C$ (по определению $\alpha=\frac{\Delta V/V_0}{\Delta t}$)?
- 4. В закрытом сосуде под давлением $p = 8.10^4 \Pi a$ находится гелий. Его масса $m = 1 \kappa z$, а плотность $\rho = 0.2 \kappa z/m^3$. Определите внугреннюю энергию U гелия.
- 5. Три точечных заряда q расположены вдоль прямой в виде цепочки с длиной звена a. Какую работу A' против сил электростатического поля нужно совершить, чтобы расположить эти заряды в вершинах равностороннего треугольника со стороной a?

