Растворы (3) Равновесия в растворах электролитов. рН и ПР

Лекция курса «Общая и неорганическая химия» для 11-х классов СУНЦ

Кислотно-основные равновесия в растворах

По Аррениусу:

Кислотой называют электролит, диссоциирующий в растворах с образованием ионов \mathbf{H}^+ ;

основанием называют электролит, диссоциирующий в воде с образованием гидроксид-ионов \mathbf{OH}^- .

Aмфолитом (амфотерным гидроксидом) называют электролит, диссоциирующий в воде с образованием как ионов \mathbf{H}^+ , так и ионов $\mathbf{O}\mathbf{H}^-$.

По Бренстеду-Лоури:

Кислотой называют вещество, молекулярные частицы которого (в т.ч. ионы) способны отдавать протон (доноры протонов); молекулярные частицы *основания* способны присоединять протоны (акцепторы протонов).

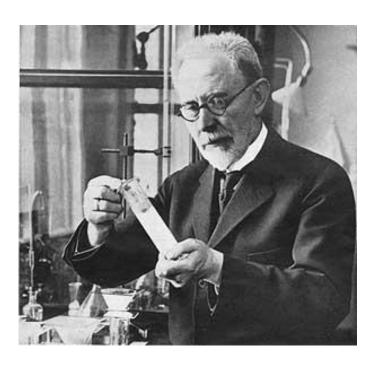
$$\mathbf{NH_4}^+ \longleftrightarrow \mathbf{NH_3} + \mathbf{H}^+$$
 кислота основание

рН - характеристика кислотности

Протолитическое равновесие в воде:

$$\mathbf{H}_{2}\mathbf{O} \leftrightarrow \mathbf{H}^{+} + \mathbf{O}\mathbf{H}^{-}$$
 $\mathbf{K}_{p} = \frac{[\mathbf{H}^{+}][\mathbf{O}\mathbf{H}^{-}]}{[\mathbf{H}_{2}\mathbf{O}]}$

При 25⁰C в чистой воде:


$$K_p[H_2O] = K_w = [H^+][OH^-] = 10^{-14}$$

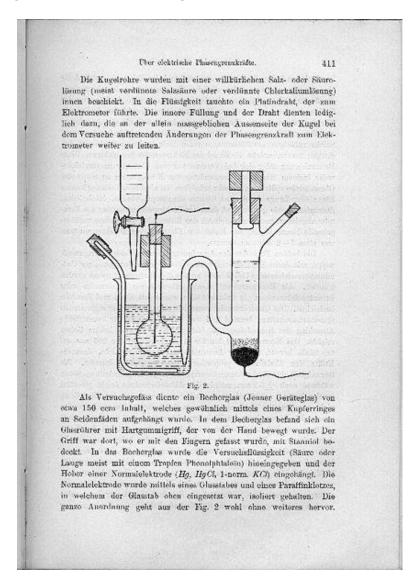
Тогда $[H^+] = [OH^-] = 10^{-7}$
 $\mathbf{pH} = -\mathbf{lg} \ [\mathbf{H}^+]$

Для чистой воды при стандартных условиях рН = 7

При **pH** > 7 раствор щелочной;

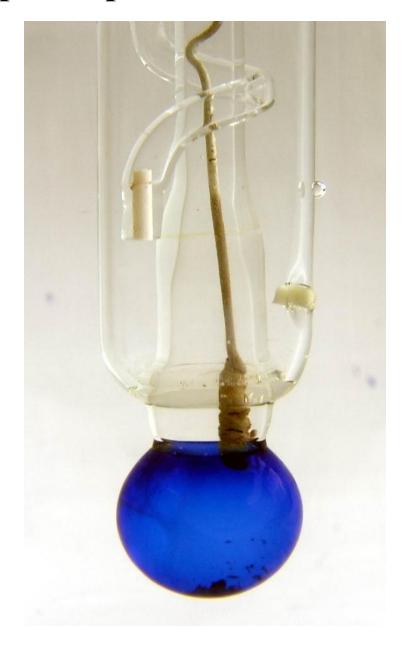
при рН < 7 раствор кислый

Измерение рН (история)


Søren Peter Lauritz Sørensen (1868-1939) С 1901 по 1938 годы Сёренсен — руководитель престижной химикофизиологической лаборатории Карлсберга в Копенгагене. Лаборатория была создана при заводе **Carlsberg** и занималась совершенствованием технологии производства пива.

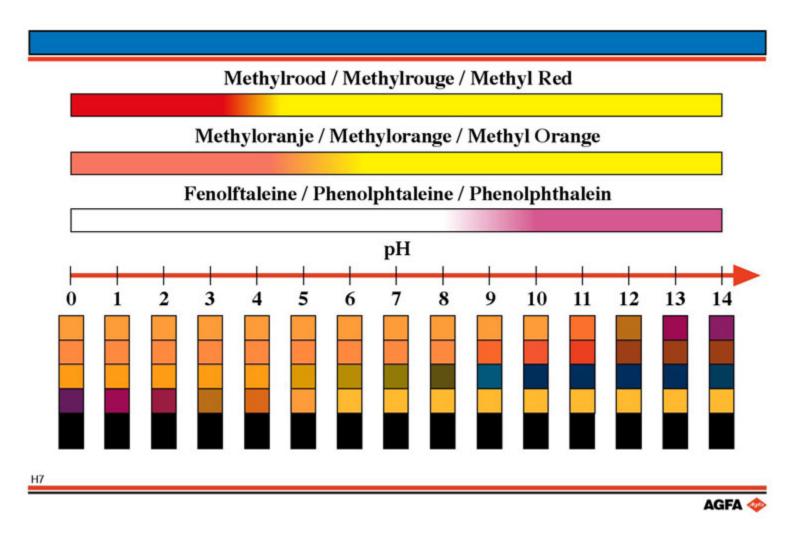
В 1909 г. он впервые использовал водородный показатель раствора рН, где р — начальная буква слов Potenz (немец.) и puissance (фр.), которые переводят на английский как power или potency, а на русский — показатель. Соответственно используются словосочетания power of Hydrogen, potency of Hydrogen и др.

Измерение рН (история)



Фриц Габер (1868-1934)

Страница из статьи Ф.Габера и С.Клеменсевича о стеклянном электроде. Zeitschrift für Physikalische Chemie. Leipzig 1909


Измерение рН: стеклянный электрод

Измерение рН: индикаторная бумага

Переходы в чистых индикаторах и смесевых индикаторных бумагах

Шкала лабораторного рН-метра

Значения рН различных биожидкостей и тканей организма человека

Биожидкость	рН (в норме)	
Сыворотка крови	7,40±0,05	
Слюна	6,35-6,85	
Моча	4,8-7,5	
Влага глаза (слезная жидкость)	7,4±0,1	
Желудочный сок	0,9-1,1	
Сок поджелудочной железы	7,5-8,0	
Молоко	6,6-6,9	
Кожа (различные слои)	6,2-7,5	

Расчет рН в растворах сильных кислот и оснований

Диссоциация сильной кислоты: $HCl \rightarrow H^+ + Cl^-$ Считаем диссоциацию полной ($\alpha = 100\%$): $[H^+] = [HC1]$ pH = - lg [HCl]Диссоциация сильного основания: $NaOH \rightarrow Na^+ + OH^-$ Считаем диссоциацию полной ($\alpha = 100\%$): $[OH^{-}] = [NaOH]$ pOH = - lg [NaOH];при 25° C [H⁺][OH⁻] = 10^{-14} pH + pOH = 14

pH = 14 - pOH

Расчет рН слабой кислоты

Диссоциация слабой кислоты:

$$CH_3COOH \leftrightarrow CH_3COO^- + H^+ \qquad (\alpha << 100\%)$$

В общем виде: $HA \leftrightarrow H^+ + A^-$

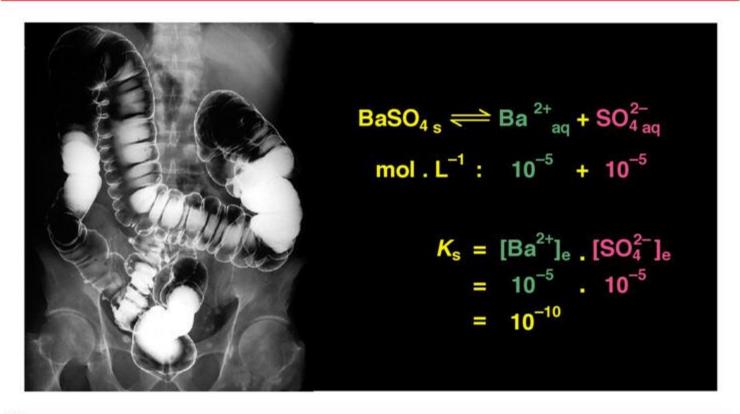
$$\mathbf{K}_{\mathbf{a}} = \mathbf{K}_{\mathbf{\kappa}\mathbf{u}\mathbf{c}\mathbf{J}} = [\mathbf{H}^{+}][\mathbf{A}^{-}]/[\mathbf{H}\mathbf{A}]$$

$$\mathbf{p}\mathbf{K}_{\mathbf{\kappa}\mathbf{u}\mathbf{c}\mathbf{J}} = -\mathbf{l}\mathbf{g} (\mathbf{K}_{\mathbf{\kappa}\mathbf{u}\mathbf{c}\mathbf{J}})$$

Считая слабую кислоту единственным

источником протонов (допущение 1)

и приравнивая равновесную концентрацию


[HA] к исходной [HA] $_0$ (допущение 2):

$$K_{\text{кисл}} = [H^+]^2/[HA]_0$$
 $[H^+] = (K_{\text{кисл}} [HA]_0)^{1/2}$

Произведение растворимости ПР

$$AK_{TB} \leftrightarrow A^- + K^+$$
Тогда $K_p = [A^-][K^+]/[AK_{TB}];$
при постоянной температуре $[AK_{TB}]$ постоянна (активность = 1), тогда $K_p[AK_{TB}] = \Pi P = [A^-][K^+]$
Для соли $Ca_3(PO_4)_2$: $Ca_3(PO_4)_2 \leftrightarrow 3 Ca^{2+} + 2 PO_4^{3-}$
 $\Pi P = [Ca^{2+}]^3[PO_4^{3-}]^2 = 2*10^{-29}$
 $\Pi P = [3M]^3[2M]^2 = 2*10^{-29}$

Сульфат бария: $\Pi P = [Ba^{2+}][SO_4^{2-}]$

E16

В лекции использованы модели из эл. учебника «Открытая химия 2.5»

(http://www.college.ru/chemistry/course/design/index.htm)

Диапазон измерений рН

M ожет ли быть pH = 0?

Да, для 1 М раствора кислоты (раствор H C1 около 4%)

Нет, т.к. рН определено для разбавленных растворов $K_w = 10^{-14}$ для чистой воды

Может ли быть pH = -1?

Да, для 10 М раствора кислоты (раствор Н С1 около 40%)

Нет, т.к. рН определено для разбавленных растворов $K_w = 10^{-14}$ для чистой воды

M ожет ли быть pH = 14?

M ожет ли быть pH = 15?

рН и разбавление

```
В 1 л воды растворили 0,0004 г
гидроксида натрия NaOH (м=40)
                                         pH - ?
0.0004/40 = 10^{-5} \text{ M}, \quad \text{C (OH}^{-}) = \text{C (NaOH)},
pOH = -lgC(OH^{-}) = 5, pH = 14 - pOH = 9
1 мл полученного раствора разбавили
в 999 мл воды
                                         pH - ?
   10^{-5}/1000 = 10^{-8}, pOH = 8, pH = 14 - 8 = 6, T.e. <7
Раствор кислый??? :- О
HO: B BOJE C(OH^-) = C(H^+) = 0,0000001M
Добавили 0,0000001 M OH-,
получилось 0,00000011 M = 1,1*10^{-7}, но не 10^{-8}
[1,1*10^{-7}][X] = 10^{-14}  X = 0,91*10^{-7}  pH = 7 - (-0,04) = 7,04
```

Основные определения кислот и оснований

	Кислота	Основание
Теория		
Аррениуса	Диссоциирует с образованием ионов H ⁺ (HNO ₃ и др.)	Диссоциирует с образованием ионов ОН- (NaOH и др.)
Бренстеда-Лоури	Донор протонов (NH_4^+ , HCl, [$Cu(H_2O)_6^-$] ²⁺)	Акцептор протонов (NH ₃ , OH ⁻ , PO ₄ ³⁻)
Льюиса	Акцептор электронной пары (BF_3, Ag^+)	Донор электронной пары (NH_3, F^-)
Лукса-Флуда (реакции в расплаве)	Акцептор оксид-ионов (SiO_2)	Донор оксид-ионов (СаО)
Сольво-систем	Повышает концентрацию катионов растворителя $(SbF_5 \ BBrF_3)$	Повышает концентрацию анионов растворителя (КF в BrF ₃)
Усановича	Донор катиона (в том числе H ⁺) или акцептор аниона (в том числе электронной пары)	Донор аниона (в том числе электронной пары) или акцептор катиона (в том числе H ⁺)

Уравнение Нернста (1)

$$\mathbf{A}\mathbf{A} + \mathbf{b}\mathbf{B} \to \mathbf{x}\mathbf{X} + \mathbf{y}\mathbf{Y}$$

$$\mathbf{\Delta}\mathbf{G} = \mathbf{\Delta}\mathbf{G}^{0} + \mathbf{R}\mathbf{T} \ln \frac{\mathbf{C}_{(\mathbf{X})}^{\mathbf{x}} \mathbf{C}_{(\mathbf{Y})}^{\mathbf{y}}}{\mathbf{C}_{(\mathbf{A})}^{\mathbf{a}} \mathbf{C}_{(\mathbf{B})}^{\mathbf{b}}}$$

$$\Delta G = - nFE$$

$$\mathbf{E} = \frac{-\Delta \mathbf{G}}{\mathbf{n} \mathbf{F}} = \frac{\mathbf{R} \mathbf{T}}{\mathbf{n} \mathbf{F}} \left[\ln \mathbf{K}_{p} - \ln \frac{\mathbf{C}_{(X)}^{x} \mathbf{C}_{(Y)}^{y}}{\mathbf{C}_{(A)}^{a} \mathbf{C}_{(B)}^{b}} \right]$$

$$E = E^{0} - (0.058/n) lg \frac{C_{(X)}^{x} C_{(Y)}^{y}}{C_{(A)}^{a} C_{(B)}^{b}}$$

Вальтер Фридрих Герман Нернст (1864-1941)

Уравнение Нернста (2)

Для двух водородных электродов:

$$E = E_2 - E_1 = (0.058/n)lg([H^+]_2/[H^+]_1) = 0.058 lg([H^+]_2/[H^+]_1)$$

Если для одного из электродов $[\mathbf{H}^+]_1 = \mathbf{1} \ \mathbf{M}$ (стандартный раствор), получим:

$$E = 0,058 lg[H^+]_2$$
 или $E = -0,058 pH$

$K_{w298} = [H^+][OH^-] = 10^{-14}$	pH = -lg C(H ⁺)	pH + pOH = 14	
Для сильной 1-Н кислоты	Для сильного 1-ОН основания		
$C(H^+) = C_{\kappa \mu c \pi}$	C(OH-) = C _{och}		

$K_{w298} = [H^+][OH^-] = 10^{-14}$	pH = -lg C(H ⁺)	Слаб. к-та $C(H^+) = (C_K K_{KИСЛ})^{1/2}$	pH + pOH = 14
Кислотн. буфер pH = $pK_{\kappa \mu c n}$ + $lg(C_{conb}/C_{\kappa \mu c nota})$		Гидролиз соли слаб. к-ты	
Основн. буфер $pOH = pK_{och} + Ig(C_{conb}/C_{ochobah})$		$C(OH^-) = [(K_w/K_{\kappa \mu c \pi})C_{co \pi \mu}]^{1/2}$	