Изучение радиационно - индуцированных изменений деформационных свойств политетрафторэтилена

<u>Выполнила</u>: Чебаненко Лилия Александровна

Научные руководители: ведущий научный сотрудник ФГУП «НИФХИ им. Л.Я. Карпова», к.х.н. Смолянский А.С.; студент ФББ МГУ Желтова Анна

Актуальность

Данные о деформации и разрушении облученных твёрдых тел могут быть использованы для изучения и прогнозирования деформационно-прочностных свойств неметаллических материалов как атомной, так и электронной, а также космической техники.

Цели и задачи

Цели:

1. Изучить радиационно-индуцированные изменения деформационных свойств политетрафторэтилена (ПТФЭ) с помощью лазерной доплеровской деформометрии;

2. Исследовать изменения поверхностных свойств ПТФЭ. **Задачи:**

1. Провести деформационные испытания как необлученных, так и облученных образцов ПТФЭ;

2. Провести исследование необлученных и облученных образцов методом растровой электронной микроскопии (РЭМ).

Образцы

Деформационным испытаниям при комнатной температуре, были подвергнуты образцы ПТФЭ цилиндрической формы (диаметр 5 мм, высота 6 мм) - исходные, необлученные.

Образцы ПТФЭ были облучены в ФГБОУ ВПО «РХТУ им. Д.И. Менделеева». Облучение образцов в диапазоне поглощённых доз от 0 до 30 кГр (мощность дозы – 0,2 Гр/с) проводилось при комнатной температуре, на воздухе воздействием γизлучения изотопа ⁶⁰Со.

Режимы испытаний

Схема работы лазерного доплеровского деформометра:

- 1 образец; 2 неподвижный пуансон;
- 3 подвижный пуансон; 4 труба;
- 5 стержень; 6 металлический

шарик;

7 – шарикоподшипники; 8 – линейный рычаг; 9 – фигурный рычаг;

- 10 груз; 11 демпфер;
- 12 часовой индикатор; 13 зеркало;
- 14 контрольный груз; 15 станина

Методы исследования

Оптическая схема лазерного доплеровского измерителя сверхмалых перемещений твёрдых тел: 16 – лазер; 13 – подвижное зеркало; 17 – поляризатор; 18, 19 – фотоприемники; 20, 21 полупрозрачные зеркала; 22, 23 - стационарные отражатели, 24 направление перемещения твёрдого тела

Методы исследования

Метод растровой электронной микроскопии (РЭМ).

Результаты и обсуждение

Кривая биений, зарегистрированная в процессе деформации политетрафторэтилена (а), зависимость деформации ПТФЭ от времени (б), скорости деформации ПТФЭ от величины деформации (в).

Результаты и обсуждение

Доза, кГр	Время до разрушения, сек.	ε _в , %
0	не разрушился	4
5	не разрушился	2,9
10	не разрушился	4
15	не разрушился	3,2
20	1680	4,28
25	3000	4,43
30	120	-

Изменения прочностных и деформационных свойств политетрафторэтилена.

Результаты и обсуждение

Электронные микрофотографии поверхности разрушения образца ПТФЭ, облученных до доз 25 кГр (а); 30 кГр (б).

Выводы

1) Установлено, что с ростом поглощённой дозы происходит смена механизма деформации и разрушения ПТФЭ: если необлученный полимер и образцы ПТФЭ, облученные до доз 15 кГр, пластически деформировались без разрушения, то в области доз свыше 20 кГр наблюдали образование трещин и хрупкое разрушение ПТФЭ.

2) Не обнаружено зависимости предела вынужденной эластичности от поглощённой дозы. При дозе 30 кГр разрушение образца наступало на стадии упругой деформации полимера.

Спасибо за внимание!

Дополнительный слайд 1

Зависимость предела вынужденной эластичности от дозы облучения ПТФЭ.

Дополнительный слайд 2

Отражённый движущимся зеркалом 13 луч b претерпевает доплеровский сдвиг частот: $\Delta \boldsymbol{\omega} = \boldsymbol{\omega} - \boldsymbol{\omega}_{0}$

(1)

где ω , ω_0 – частоты колебаний проходящей и отражённой от зеркала световой волны, соответственно. В простейшем случае, когда зеркало расположено перпендикулярно падающему на него световому лучу и перемещается параллельно самому себе, имеет место «продольный эффект Доплера». В этом случае частоту отражённого света можно определить по формуле:

$$\boldsymbol{\omega} = \frac{\boldsymbol{\omega}_{0} \left(1 + \boldsymbol{v}/\boldsymbol{c} \right)}{\sqrt{1 - \boldsymbol{v}^{2}/\boldsymbol{c}^{2}}}$$
(2)

где с – скорость света, v – скорость движения источника света (мнимого): v $= 2\dot{\epsilon}_{a}$, где $\dot{\epsilon}_{a}$ – скорость перемещения зеркала 2 (10⁻³ – 10⁻⁹ м/с). Поскольку v<<с, получим:

$$\boldsymbol{\omega} = \boldsymbol{\omega}_0 \begin{pmatrix} \mathbf{1} + 2\boldsymbol{\varepsilon}_a \\ \mathbf{1} + \boldsymbol{c} \end{pmatrix}$$
(3)

$$\Delta \boldsymbol{\omega} = 2 \boldsymbol{\dot{\varepsilon}}_{\boldsymbol{a}} \cdot \frac{\boldsymbol{\omega}_0}{\boldsymbol{c}} \tag{4}$$

В результате сложения двух световых волн получается новая волна – «волна биений», интенсивность которой осциллирует с частотой $\Delta \omega$ -«частотой биений».

Оптическая схема лазерного доплеровского деформометра: 16 – лазер; 13 – подвижное зеркало; 17 – поляризатор; 18, 19 – фотоприемники; 20, 21 – полупрозрачные зеркала; 22, 23 – стационарные отражатели, 24 направление перемещения твёрдого тела

Теория метода

Дополнительный слайд 3

Пусть интенсивности падающего и отражённого лучей света – I₁ и I₂, тогда интенсивность результирующего светового потока:

$$\boldsymbol{I} = \boldsymbol{I}_1 + \boldsymbol{I}_2 + 2\sqrt{\boldsymbol{I}_1\boldsymbol{I}_2} \cos(\Delta \boldsymbol{\omega} \boldsymbol{t})$$

Очевидно, что при $cos(\Delta \omega)=1$ будет наблюдаться максимальная интенсивность света, фиксируемого системой регистрации. Пусть частота следования максимумов интенсивности биений $v = \Delta \omega / 2\pi$ тогда, с учётом того, что $\omega_0 = 2 \pi c / \lambda$, получим:

$$\mathbf{v} = \frac{2\varepsilon_a}{\lambda}$$
 (6)

где λ - длина волны источника света. Для используемого в работе лазера с длиной волны 633 нм диапазон изменения частоты составит $\approx 0,3 \cdot (10^4 \div 10^4) c^{-1}$, что можно экспериментально зарегистрировать.

Выражение для скорости перемещения зеркала:

$$\mathbf{\dot{\epsilon}}_{a}=\frac{\mathbf{\lambda}}{2}\mathbf{v}$$

Для оценки величины перемещения \mathcal{E}_a получим, интегрируя (7):

$$\mathbf{\epsilon}_{a} = \frac{\lambda}{2} N$$

где N-число полных колебаний интенсивности волны биений.

Дополнительный слайд 4

Примеры кривых биений при различных значениях сдвигов

Фрагменты кривых биений, рассчитанных по уравнению (5)

$$\boldsymbol{I} = \boldsymbol{I}_1 + \boldsymbol{I}_2 + 2\sqrt{\boldsymbol{I}_1\boldsymbol{I}_2} \cos(\Delta \boldsymbol{\omega} \boldsymbol{t})$$

при ∆ω = 0,1 (а); 1 (б); 10 (в), соответственно, и экспериментально зарегистрированной зависимости (д)