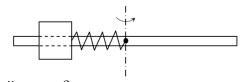

2014 год.

Вариант 1.

1. Мимо остановки по прямой улице проезжает грузовик со скоростью 16 м/с. Через время 12 с от остановки вдогонку грузовику отъезжает мотоциклист, движущийся с постоянным ускорением 2 м/c^2 . На каком расстоянии от остановки мотоциклист догонит грузовик?

- 2. Найдите, чему равна первая космическая скорость для Марса, если масса Марса в 10 раз меньше массы Земли, а радиус Марса примерно в 2 раза меньше радиуса Земли. Первая космическая скорость для Земли равна примерно 7,8 км/с.
- 3. Вверх по наклонной плоскости с углом наклона к горизонту $\alpha = 45^{\circ}$ пущена шайба. Коэффициент трения шайбы о плоскость $\mu = 0,5$. Во сколько раз время спуска шайбы t_2 больше времени подъема t_1 ?
- 4. Цилиндрическое тело массой m=1 кг надето на гладкий горизонтальный стержень, который вращается вокруг вертикальной оси, делая n=2 оборота в секунду. Тело прикреплено к оси вращения легкой пружиной. Чему равна жесткость пружины, если при вращении стержня пружина удлиняется в N=2 раза.


- 5. Два тела массами $m_1=2$ кг и $m_2=4$ кг движутся по прямой навстречу друг другу со скоростями $V_1=2$ м/с и $V_2=1$ м/с соответственно. Найдите изменение внутренней энергии этих тел при их абсолютно неупругом центральном ударе.
- * При расчетах принять $g \approx 10 \text{ м/c}^2; \ \sqrt{2} \ \approx 1.4; \ \sqrt{3} \ \approx 1.7; \ \pi^2 \approx 10$
- * Калькулятором не пользоваться.

Письменный экзамен по физике в СУНЦ МГУ для поступающих в 10 класс

2014 год.

Вариант 2.

- 1. Мимо остановки по прямой улице проезжает грузовик со скоростью 43,2 км/ч. Через время 12 с от остановки вдогонку грузовику отъезжает мотоциклист, движущийся с постоянным ускорением 4 м/ c^2 . До какой скорости успеет разогнаться мотоциклист к тому моменту, когда он догонит грузовик?
- 2. Найдите, чему равна первая космическая скорость для Луны, если масса Луны в 81 раз меньше массы Земли, а радиус Луны примерно в 4 раза меньше радиуса Земли. Первая космическая скорость для Земли равна примерно 7,8 км/с.
- 3. Вверх по наклонной плоскости с углом наклона к горизонту $\alpha = 30^{\circ}$ пущена шайба со скоростью $V_o = 17$ м/с. Через некоторое время она останавливается и соскальзывает вниз. С какой скоростью она вернется в исходную точку, если коэффициент трения шайбы о плоскость $\mu = \frac{1}{2\sqrt{3}}$?
- 4. Муфта массой m = 900 г надета на гладкий горизонтальный стержень, который вращается вокруг вертикальной оси. Муфта прикреплена к оси вращения легкой пружиной с коэффициентом жесткости k = 90 Н/м. Чему равна угловая скорость вращения стержня, если пружина удлиняется при этом на одну восьмую своей длины?

5. Между двумя телами, лежащими на гладкой плоскости, зажата сжатая пружина. Тела одновременно освобождают, и пружина распрямляется. Какие скорости приобретут эти

тела, если их массы равны $m_1 = 2$ кг и $m_2 = 3$ кг, а энергия сжатой пружины W = 135 Дж?

При расчетах принять $g\approx 10~\text{m/c}^2;~\sqrt{2}\approx 1,4;~\sqrt{3}\approx 1,7.$ Калькулятором не пользоваться.