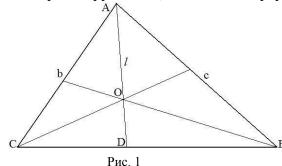
Биссектриса

Биссектриса внутреннего угла треугольника — это отрезок прямой, заключенный внутри треугольника и делящий данный угол на две равные части.

Биссектриса обладает следующими важными свойствами:

- 1) биссектриса есть геометрическое место точекі, равноудаленных от сторон угла;
- 2) во всяком треугольнике биссектрисы пересекаются в одной точке O (рис. 1), являющейся центром окружности, *вписанной* в треугольник (т.е. касающейся всех его сторон);



3) биссектриса AD (рис. 1) любого угла A треугольника ABC делит противоположную сторону на части CD и BD, пропорциональные прилежащим сторонам AC и AB треугольника:

$$\frac{CD}{BD} = \frac{AC}{AB}.$$

Доказательство. Легко видеть, что площади треугольников ACD и ABD, имеющих общую вершину A, относятся как длины их оснований, т.е. $S_{ACD} \colon S_{ABD} = CD \colon BD$.

С другой стороны, эти площади относятся как длины сторон b: c (AC = b, AB = c), поскольку $S_{ACD} = \frac{1}{2}bl\sin(\alpha/2)$, $S_{ABD} = \frac{1}{2}cl\sin(\alpha/2)$, где l — длина биссектрисы AD, а α — величина угла A и, следовательно, S_{ACD} : $S_{ABD} = b$: c. Из сравнения полученных пропорций и вытекает доказываемое утверждение;

4) длина l биссектрисы AD (рис. 1) угла A треугольника ABC, равного α , заключенного между сторонами AC и AB, определяется по формуле:

$$l = \frac{2bc \cos \alpha/2}{b+c} = \frac{2\cos \alpha/2}{\frac{1}{b} + \frac{1}{c}}.$$

Доказательство. Запишем площадь треугольника ABC двумя различными способами – один раз через стороны AC, AB и угол α , заключенный между ними, другой раз – через сумму площадей треугольников ACD и ABD:

$$S_{ABC} = \frac{1}{2}bl\sin\alpha;$$

$$S_{ABC} = S_{ACD} + S_{ABD} = \frac{1}{2}bl\sin\alpha/2 + \frac{1}{2}cl\sin\alpha/2.$$

Приравнивая эти выражения друг другу, получаем:

$$bc \sin \alpha = (b+c)l \sin \alpha/2$$

или

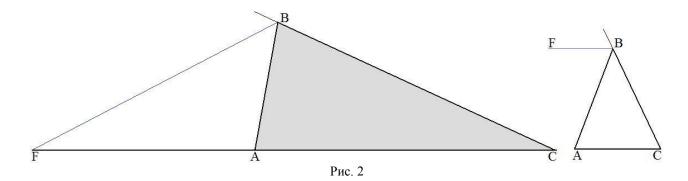
$$2bc \sin \alpha/2 \cos \alpha/2 = (b+c)l \sin \alpha/2$$
,

откуда и следует указанная выше формула для вычисления длины биссектрисы.

Свойство биссектрисы внешнего угла треугольника: биссектриса BF внешнего угла треугольника (рис. 2), смежного с углом B, при $AB \neq BC$ пересекает продолжение противоположной стороны AC в такой точке F, что

$$\frac{AF}{CF} = \frac{AB}{BC};$$

в случае AB = BC биссектриса внешнего угла параллельна основанию.



При использовании следующих формул длины биссектрисы также необходимо рядом приводить их вывод (проделайте это самостоятельно):

A) $l_a = \sqrt{bc - a_b a_c}$, где a_b , a_c – части стороны a, на которые ее делит биссектриса угла A;

Б)
$$l_a = \frac{2\sqrt{bcp(p-a)}}{b+c}$$
, где $p = \frac{a+b+c}{2}$ — полупериметр треугольника.

Теорема Штейнера-Лемуса. Любой треугольник, у которого равны длины биссектрис двух углов (измеряемые от вершины до противоположной стороны), является равнобедренным¹¹.

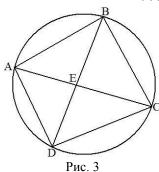
А вот следующая забавная вариация на ту же тему почти неизвестна даже среди любителей геометрии.

Про данный треугольник известно, что треугольник, образованный основаниями его биссектрис, является равнобедренным. Можно ли утверждать, что и данный треугольник равнобедренный?

Оказывается, утверждать это, вообще говоря, нельзя!іі.

Задача 1. Диагонали вписанного в окружность четырехугольника *ABCD* пересекаются в точке E, причем $\angle ADB = \frac{\pi}{8}$, BD = 6 и $AD \cdot CE = DC \cdot AE$. Найдите площадь четырехугольника *ABCD* .

Решение. Искомая площадь будет равна $S = \frac{1}{2}AC \cdot BD \sin AEB$.



- 1) Из условия $AD \cdot CE = DC \cdot AE$ имеем $\frac{AD}{DC} = \frac{AE}{CE}$. Таким образом в треугольнике *ADC* отрезок DE делит противоположную сторону АС на отрезки, пропорциональные прилежащим сторонам. Значит, DE – биссектриса в треугольнике *ADC*.
- 2) Тогда $\angle ADC = 2\angle ADB = \frac{\pi}{4}$ и по теореме синусов $AC = 2R \sin \frac{\pi}{4}$, R радиус описанной окружности треугольника *ADC*, т.е. данной окружности.
- 3) Треугольник ABE подобен треугольнику DBA по двум углам, тогда $\angle AEB = \angle DAB$ и $\sin AEB = \sin DAB = \frac{BD}{2R}$ (по теореме синусов). Искомая площадь равна

$$S = \frac{1}{2}AC \cdot BD \sin AEB = \frac{1}{2} \cdot 2R \sin \frac{\pi}{4} \cdot BD \cdot \frac{BD}{2R} = \frac{1}{2}BD^2 \sin \frac{\pi}{4} = 9\sqrt{2}.$$

Задача 2. В окружности проведены хорды AC и BD, пересекающиеся в точке E, причем касательная к окружности, проходящая через точку C, параллельна BD. Известно, что AB: BE = 3: 1 и $S_{ADC} = 18$. Найдите площадь треугольника CDE.

Ответ. 2.

Задача 3. В треугольнике *ABC* сторона *AB* равна 21, биссектриса *BD* равна $8\sqrt{7}$, а отрезок *DC* равен 8. Найти периметр треугольника *ABC*.

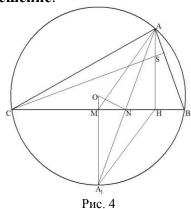
Ответ. 60.

Задача 4. Точка *O* лежит на диагонали *AC* выпуклого четырехугольника *ABCD*. Известно, что OC = OD и точка *O* одинаково удалена от прямых *DA*, *AB* и *BC*. Найти углы четырехугольника, если $\angle AOB = 110^{\circ}$ и $\angle COD = 90^{\circ}$.

Ответ. 50°, 90°, 110°, 110°.

Задача 5. В треугольнике ABC проведены высота AH длины h, медиана AM длины l и биссектриса AN. Точка N — середин отрезка MH. Найти расстояние от вершины A до точки пересечения высот треугольника ABC.

Решение.



Во многих задачах, связанных с биссектрисой треугольника, бывает полезно продолжить эту биссектрису до пересечения с описанной окружностью в середине дуги, на которую опирается рассматриваемый угол.

Тогда на рисунке хорошо будет видно, как именно друг относительно друга будут расположены биссектриса, медиана и высота. На рис. 4 точка A_1 — середина дуги CB.

При этом радиус OA_1 проходит через точку M и $OA_1 \perp CB$, тогда $MAHA_1$ — параллелограмм (MN = NH по условию), значит $AN = NA_1$, следовательно $ON \perp AA_1$ и $\Delta ONA_1 \sim \Delta NHA$ (по двум углам при вершинах A и A_1).

Пусть S — точка пересечения высот ABC, AS=x, $OC=OA_1=R$, MN=MH=y, $AN=NA_1=d$, BC=a.

- 1) $\triangle MAH : l^2 h^2 = 4v^2$;
- 2) $\triangle NAH : d^2 h^2 = y^2$;

3)
$$\triangle ONA_1 \sim \triangle NHA$$
: $\frac{d}{R} = \frac{h}{d} \implies Rh = \frac{3h^2 + l^2}{4}$;

4)
$$\triangle COM$$
: $\frac{a^2}{4} = R^2 - (R - h)^2$;

5)
$$\triangle CSH \sim \triangle ABH$$
: $\Rightarrow \frac{SH}{CH} = \frac{HB}{AH} \Rightarrow \frac{h-x}{a/2+2y} = \frac{a/2-2y}{h} \Rightarrow x = h - \frac{a^2/4-y^2}{h}$.

Ответ. $\frac{l^2-h^2}{2h}$.

Задача 6. Биссектриса AD равнобедренного треугольника ABC (AB = BC) делит сторону BC на отрезки BD = b и DC = c. Найти AD.

Otbet.
$$c\sqrt{2+\frac{c}{d}}$$
.

Задача 7. В треугольнике *ABC* дано: AB = c, AC = b (b > c), AD — биссектриса. Через точку D проведена прямая, перпендикулярная AD и пересекающая AC в точке E. Найти AE.

Ответ.
$$\frac{2bc}{b+c}$$
.

Задача 8. В треугольнике *KLM* радиус окружности равен R, угол K равен α , точка O — центр окружности, вписанной в этот треугольник. Прямая KO пересекает окружность, описанную около треугольника KLM, в точке N. Найти ON.

Ответ. $2R \sin \alpha/2$.

Задача 9. Доказать, что биссектриса треугольника делит пополам угол между радиусом описанной окружности и высотой, проведенными из той же вершины.

Задача 10. Через основания биссектрис треугольника *ABC* проведена окружность. Рассмотрим три хорды, образованные при пересечении сторон треугольника с этой окружностью. Доказать, что длина одной из этих хорд равна сумме длин двух других.

¹ **Геометрическим местом точек** называется такое множество, которое содержит все точки, обладающие этим свойством, и не содержит ни одной точки, не обладающей им.

¹¹ Эта теорема была послана шведскому геометру Якобу Штейнеру в 1840 году С.Л. Лемусом с просьбой дать чисто геометрическое доказательство. Штейнер дал довольно сложное доказательство, которое вдохновило многих других на поиск более простых методов.

ііі Подробное решение этой задачи дается в книге И.Ф. Шарыгина «Задачи по геометрии (планиметрия)» (М., Наука, 1982), с. 157.