СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР – факультет МГУ имени М.В. Ломоносова, Школа имени А.Н. Колмогорова

Кафедра физики

Общий физический практикум

Лабораторная задача № 2.3

ОПРЕДЕЛЕНИЕ УДЕЛЬНОЙ ТЕПЛОТЫ ПАРООБРАЗОВАНИЯ ВОДЫ ПРИ ТЕМПЕРАТУРЕ 100 °C

составители: Соловей А.Б. и Макаров И.А.

ОПРЕДЕЛЕНИЕ УДЕЛЬНОЙ ТЕПЛОТЫ ПАРООБРАЗОВАНИЯ ВОДЫ ПРИ ТЕМПЕРАТУРЕ 100 °C

Теоретическая часть

Среди многих возможных состоянии вещества можно выделить три основные: твердое, жидкое и газообразное. Или, как еще говорят термодинамике, вещество может находиться в трёх основных фазах: жидкой, твердой и газообразной. Например, лёд, вода и водяной пар. В общем случае в термодинамике фазой называют совокупность однородных, одинаковых по своим свойствам частей системы. Состояние, в котором находится система, определяется её параметрами: давлением и температурой. Причём для разновесного состояния одного и того же вещества сразу в двух фазах необходимы определённые соотношения между температурой и давлением. И, наконец, при единственном значении давления Р = Рт и температуры $T = T_{TD}$ в равновесии могут находиться сразу три фазы данного вещества (Рис. 1).

Каждой точке фазовой диаграммы соответствуют определённые значения давления и температуры и, вообще говоря, определённое значение внутренней энергии системы. Переход из области одной фазы в область другой фазы почти всегда совершается через равновесное двухфазное состояние. При этом в равновесном состоянии давление и температура обеих фаз одинаковы, но

характер упаковки частиц различный, т.е. плотность вещества в каждой фазе своя.

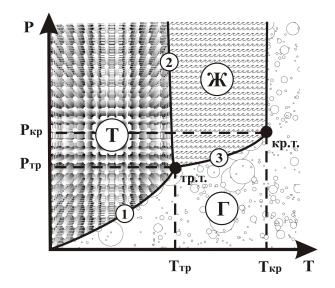


Рис. 1 Фазовая диаграмма состояний: 1 - кривая-равновесия твердой и газообразной фаз, 2 — кривая равновесия твердой и жидкой фаз, 3 - кривая равновесия жидкой и газообразной фаз, «тр.т.» - тройная точка, «кр.т.» - критическая точка.

Отсюда ясно, что даже при одинаковых температурах внутренняя энергия единичной кассы одной фазы вещества не равна внутренней энергии единичной массы другой фазы вещества, поэтому переход из одной фазы в другую также требует изменения внутренней энергии системы.

Изменить внутреннюю энергию системы можно либо посредством совершения работы, либо в процессе теплопередачи. Напомним, что *теплота*

есть мера изменения внутренней энергии системы в процессе теплопередачи. Количество теплоты, необходимое для перехода системы из одной фазы в другую при постоянной температуре, называют скрытой теплотой перехода.

Основные фазовые переходы

- 1. Сублимация переход в газообразное состояние твёрдого тела;
- 2. Плавление переход в жидкое состояние твёрдого тела;
- 3. Испарение переход в газообразное состояние жидкости.

(Важно заметить, что существуют и обратные им переходы).

Даже для одного перехода, но совершаемого в различных условиях, скрытая теплота имеет разные значения.

Наряду с понятием теплоты перехода вводится понятие удельной теплоты перехода.

Пример

Количество теплоты, необходимое ДЛЯ превращения при постоянной температуре единицы массы жидкости в пар, называют удельной теплотой парообразования. Заметим, что удельная парообразования теплота уменьшается увеличением температуры. Она равна нулю при критической температуре, когда не существует различия между жидкостью и газом. Значение удельной теплоты перехода находят опытным путём.

Экспериментальная часть.

Одним из методов определения удельной теплоты парообразования является метод конденсации. При конденсации выделяется точно такое же количество теплоты, которое поглощается при испарении.

Эскиз экспериментальной установки

В состав экспериментальной установки для определения удельной теплоты парообразования воды входят следующие приборы (рис.2):

- 1. Электроплитка;
- 2. Парообразователь;
- 3. Сухопарник;
- 4. Калориметр;
- 5. Термометр;
- 6. Весы с разновесами (на рис.2 не показаны);
- 7. Соединительные шланги (на рис.2 не показаны).

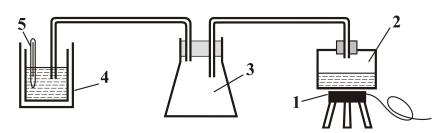


Рис. 2 Эскиз экспериментальной установки для определения удельной теплоты парообразования воды.

Связь измеряемых величин

Водяной пар, полученный при температуре кипения воды, попадает в калориметр с водой. Конденсируется, отдает воде в калориметре количество теплоты Q_1 . Полученный конденсат имеет температуру пара. Охлаждаясь, он отдает воде в калориметре количество теплоты Q_2 . Таким образом, вода вместе с калориметром получает количество теплоты:

$$Q = Q_1 + Q_2, \tag{1}$$

Введем следующие обозначения:

T - конечная температура воды;

 T_0 - начальная температура воды;

 T_n - температура пара;

твы - масса воды в калориметре;

 m_{π} - масса пара;

тик - масса калориметра;

 C_{κ} - удельная теплоемкость калориметра (алюминиевого);

С_в - удельная теплоемкость воды;

 λ - удельная теплота парообразования воды.

Тогда:

$$Q = C_K m_K (T - T_0) + c_B m_B (T - T_0)$$

$$Q_1 = \lambda m_{II}$$

$$Q_2 = c_B m_{II} (T_{II} - T)$$
(2)

Подставляя (2) в (1), получаем:

$$\lambda = \frac{(c_B \cdot m_B + c_\kappa \cdot m_\kappa) \cdot (T - T_0) - c_B \cdot m_\Pi \cdot (T_\Pi - T)}{m_\Pi}, \quad (3)$$

План эксперимента

- Налейте воду в водяную баню (2/3 её высоты);
- Поставьте водяную баню на плитку, закройте её пробкой. Включите плитку;
- Взвесьте внутренний стакан калориметра;
- Налейте в калориметр 50-70 грамм воды и взвесьте ее вместе со стаканом;
- Соберите калориметр и измерьте температуру T_o . Подождите, пока из конца трубки, которую нужно опустить в калориметр, не пойдет достаточно сухой пар, и опустите трубку в воду в калориметре;
- Опыт заканчивают, когда вода в калориметре нагреется до 70°-80°C.
- Взвесьте воду в стакане калориметра и найдите массу конденсата.
- Результаты всех измерений запишите.

Расчётная часть

- 1. Выпишите из таблиц значения удельной теплоемкости воды и алюминия;
- 2. Рассчитайте λ по формуле (3).
- 3. Сравните результат с табличным значением и проанализируйте возможность ошибок.

Вопросы к допуску

- 1. Почему нужно дождаться, чтобы из трубки пошел сухой пар и не проводить эксперимент с паром, содержащим капельки воды?
- 2. Почему нужно заканчивать эксперимент при температуре 70°-80°C, не больше и не меньше?

Вопросы к защите

- 1. Что такое фаза вещества?
- 2. Как выглядит фазовая диаграмма?
- 3. Что такое внутренняя энергия?
- 4. Что понимают под количеством теплоты?
- 5. Что такое скрытая теплота перехода?
- 6. Как определяется удельная теплота парообразования и как она зависит от температуры?
- 7. Что такое критическое состояние вещества?
- 8. Можно ли осуществить переход жидкость-газ, минуя двухфазное состояние?
- 9. Какие процессы происходят в калориметре?
- 10. Что такое «сухой пар»?

Рекомендуемые источники

- 1. Мякишев Г.Я., Синяков А.З., «Молекулярная физика и термодинамика», учебник Физика-10 класс.
- 2. Матвеев А.Н. «Молекулярная физика: учебное пособие», т. 2.
- 3. Сивухин Д.В. «Общий курс физики», т.2.
- 4. Телеснин Р.В. «Молекулярная физика».
- 5. Путилов К.А. «Курс физики», т.1.
- 6. Больцман Л. «Лекции по теории газов»
- 7. Сергеев С.Н. «Обработка результатов физического эксперимента».
- 8. wikipedia.org