
Карбоксильные соединения

Карбоновые кислоты

Классификация карбоновых кислот

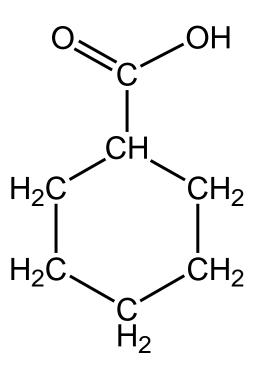
По характеру углеродного скелета

- алифатические (предельные и непредельные)
- ароматические

По числу карбоксильных групп

- одноосновные (один карбоксил в молекуле)
- двухосновные (два карбоксила)
- многоосновные

По числу атомов С в молекулах алифатических кислот


• n>6 жирные кислоты

Номенклатура: примеры названий

• 3,4-диметилпентановая кислота

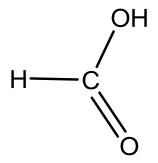
Г	Число Название Название Тривиальное Тривиальное Этимология					
-				·	·	
-	атомов	кислоты по	соли по	название	название	тривиального
ı	C	ИЮПАК	ИЮПАК	кислоты	соли	названия
Γ	1	Метановая	Метаноат	Муравьиная	Формиат	лат. Formica –
ı						муравей
ı						
l	2	Этановая	Этаноат	Уксусная	Ацетат	лат. Acetum —
l						уксус
l						
l	3	Пропановая	Пропаноат	Пропионовая	Пропионат	 Γρ. πρωτος
l		·	·	·	·	первый, люу-
l						жир
l						MID
l	4	Бутановая	Бутаноат	Масляная	Бутират	 лат. B uty rum
l	7	Бутановая	Бутаноат	IVIACITANAA	Бутират	масло
l						Macro
l	5	Поштошовод	Поштошост	Bonon augnon	Popopor	Dot Voloriono
l	٠	Пентановая	Пентаноат	Валерьяновая	Валерат	лат. Valeria n a -
l						валериана
l						(v alere – быть
l						сильным)
				16	16	
	6	гексановая	гексаноат	Капроновая	Капронат	лат. Сарег —
L						коза.

• 2-метилбутандиовая кислота

• циклогексанкарбоновая кислота

Лимонная кислота

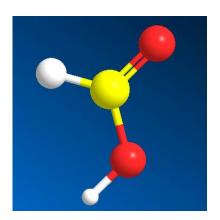
$$HO \longrightarrow OH OH$$

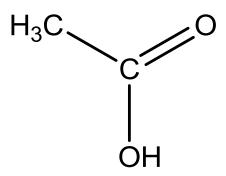

- 3-гидрокси-3-карбоксипентандиовая
- 2-гидрокси-1,2,3-пропантрикарбоновая кислота,

lpha-гидроксипропановая кислота

Предельные одноосновные карбоновые кислоты $C_nH_{2n+1}COOH$

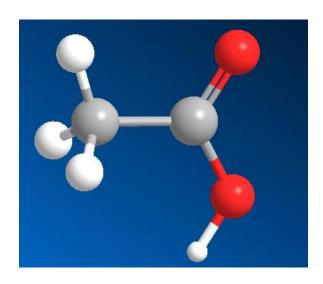
• Простейшие представители:


Муравьиная кислота

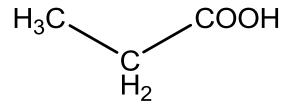


соли - формиаты

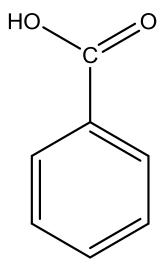
Уксусная кислота



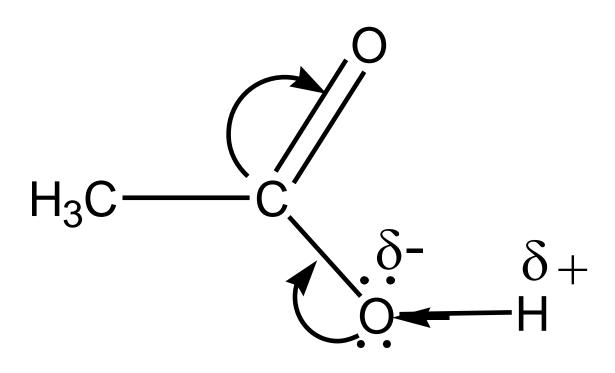
Соли - ацетаты



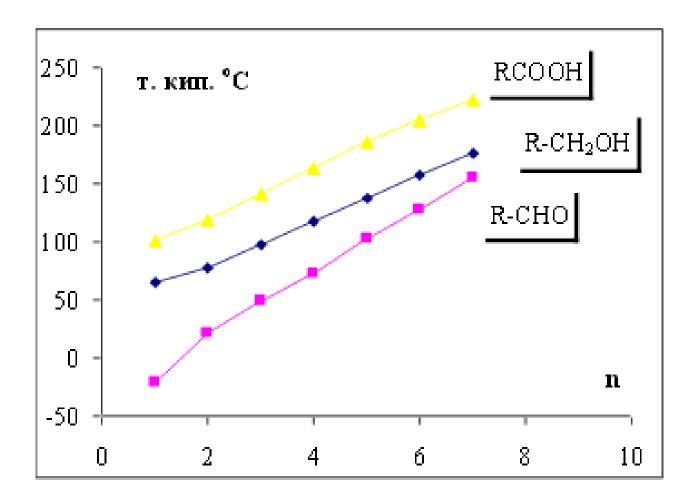

Пропионовая кислота

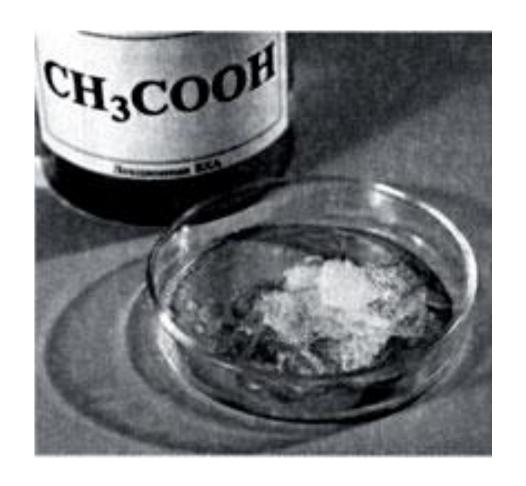

• Соли – пропионаты

Бензойная кислота



Соли - бензоаты




Строение карбонильной группы

Физические свойства. Т.кип.

http://norgchem.professorjournal.ru/c/document_library/get_file?uuid=9a25 8082-dde4-4f7f-af1e-2e3a4a7d579d&groupId=19807

Ледяная уксусная кислота при охлаждении ниже 16,6 °C – бесцветные кристаллы

- Ловиц Товий Егорович (1757- 1804), российский химик и фармацевт, академик Петербургской АН (1793). Впервые получил концентрированную уксусную кислоту. Однажды пролитую концентрированную уксусную кислоту он собирал тряпкой. Через некоторое время кожа на его руках опухла и вскоре стала отваливаться большими кусками.
- Такой же эффект может наблюдаться у тех кто использует уксусную эссенцию для снятия ржавчины с гаек и держат смоченную эссенцией вату или тряпку долгое время в руках

http://norgchem.professorjournal.ru/c/document_library/get_file?uuid=9a258082-dde4-4f7f-af1e-2e3a4a7d579d&groupId=19807

Диссоциация карбоновых кислот

$$R - C \xrightarrow{\delta^{+}}_{\ddot{O}} + H^{+}$$

$$\Rightarrow R - C \xrightarrow{O}_{\ddot{O}} + H^{+}$$

Общие свойства кислот

- Взаимодействуют с активными металлами $2CH_3COOH + Mg \rightarrow (CH_3COO)_2Mg + H_2^{\uparrow}$
- c основными оксидами 2CH₃COOH + ZnO \rightarrow (CH₃COO)₂Zn + H₂O
- *с солями более слабых кислот* 2CH₃COOH + Na₂CO₃ →2CH₃COONa + CO₂↑+H₂O

Еще про силу кислот Суперкислоты

• Может ли быть кислота, сильнее серной?

В водном растворе - нет.

 H_3O^+

Для неводных сред существуют количественные характеристики кислотности, функция кислотности Гаммета и др.

Все, что сильнее конц. H_2SO_4 - суперкислоты

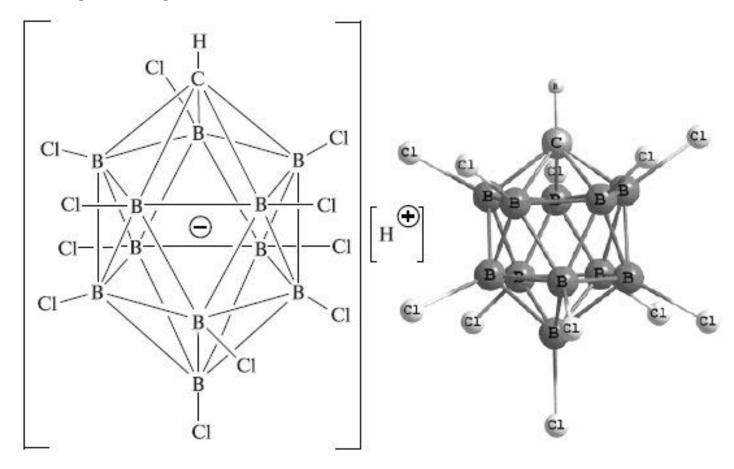
Суперкислоты

$$-Ho = 12$$

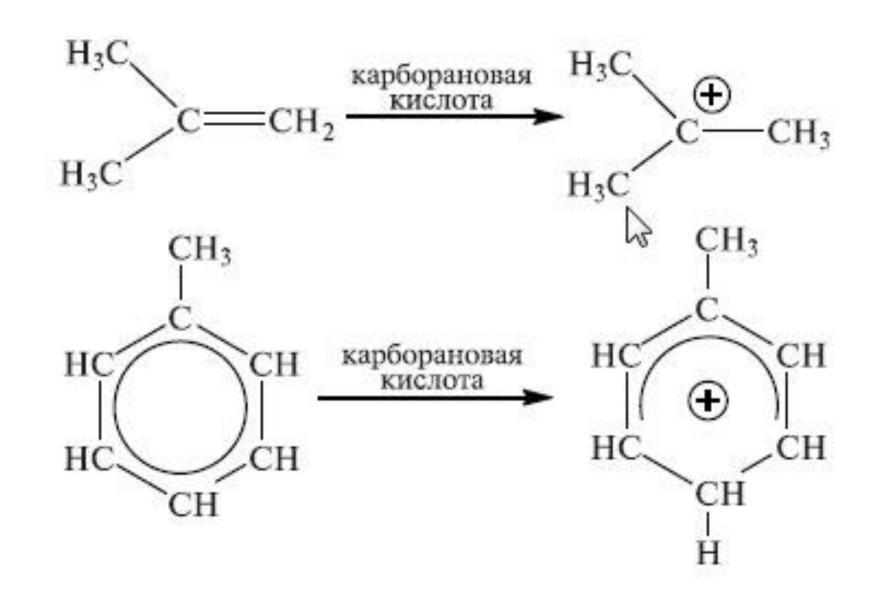
$$-Ho = 13$$

$$-Ho = 13,9$$

$$-Ho = 13,0$$


Комплексные суперкислоты

•
$$H_2SO_4$$
- SO_3 (1:1) - $Ho = 14,4$


- $\mathbf{HF} \mathbf{SbF_5} (1:1)$ - $\mathbf{Ho} > 20$
- FSO₃H SbF₅ (1:1) magic acid

$$-Ho = -17,5$$

Карборановая кислота 2006 г

ementy.ru/lib/431247

И опять про химические свойства карбоновых кислот.

Нуклеофильное замещение ОН-группы

Примены пеакний

Образование сложных эфиров. При взаимодействии карбоновых кислот со спиртами образуются сложные эфиры, а сама реакция называется реакцией этерификации.

$$C_6H_5$$
— C_0 + C_2H_5 ОН $\frac{H_2SO_4}{4}$ С $_6H_5$ — C_0 + H_2 О бензойная кислота этилбензоат


Взаимодействие карбоновых кислот со спиртами (реакция этерификации)

$$CH_3COOH + C_2H_5OH \xrightarrow{H_2SO_4} CH_3COOC_2H_5 + H_2O$$

=

Механизм этерификации

Восстановление карбоновых кислот

Декарбоксилирование карбоновых кислот и их солей

$$OH OH OH OH$$
 $CH_3COOK + KOH \longrightarrow CH_4 + K_2CO_3$

Реакция Кольбе

Взаимодействие предельных кислот с галогенами:

• Реакция Геля-Фольгардта-Зелинского

$$H_3C$$
— CH_2 — $COOH$ + Br_2 — P H_3C — CH — $COOH$ + HBr
 Br

Присоединение галогеновородов к непредельным карбоновым кислотам:

Окисление муравьиной кислоты:

$$H-O-C=O$$

 H + 2 Ag(NH₃)₂OH \rightarrow

$$(NH_4)_2CO_3 + 2Ag \downarrow + 2NH_3 + 2H_2O$$

Haгревание с H₂SO₄

$$HCOOH \rightarrow (t) CO\uparrow + H_2O$$

Малеиновая и фумаровая кислоты

цис-бутеновая кислота

транс-бутеновая кислота

Щавелевая кислота

COOH
$$H_2SO_4$$
 $CO_2 + CO + H_2O$.

$$\stackrel{\text{COOH}}{\downarrow}$$
 + KMnO₄ $\stackrel{\text{H}_2\text{O}}{\longrightarrow}$ 2CO₂ + Mn² + H₂O.

Способы получения

 Окисление альдегидов и первичных спиртов — общий способ получения карбоновых кислот:

$$R-CH_2-OH-OH-OH$$
 $R-CH=O-OH$ кислота

2. Другой общий способ — гидролиз галогензамещенных углеводородов, содержащих три атома галогена у одного атома углерода:

$$R-CCl_3 \xrightarrow{3NaCl} [R-C(OH)_3] \rightarrow R-COOH+H_2O$$

3. Взаимодействие реактива Гриньяра с CO₂:

$$R-MgBr+CO_2 \rightarrow R-COO-MgBr \xrightarrow{H_2O} R-COOH+Mg(OH)Br$$

Муравьиная кислота - нагревание оксида углерода (II) с гидроксидом натрия под давлением

Уксусная кислота - каталитическое окисление бутана

2CH3CH2CH3 + 5O2 → 4CH3COOH + 2H2O

или каталитическое карбонилирование метанола:

:CH3OH + CO → CH3COO

Получение салициловой кислоты

$$C_6H_5ONa + CO_2 \xrightarrow{180^{\circ}C} C_6H_4(ONa)COOH$$

 $C_6H_4(ONa)COOH + HCI \rightarrow C_6H_4(OH)COOH + NaCI$