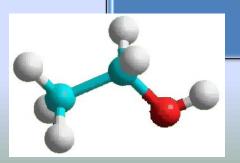
Гидроксильные соединения


Гидроксильные соединения

Спирты (алкоголи)

Фенолы

Молекула содержит одну или несколько гидроксильных групп ОН

Молекула содержит гидроксильную группу ОН, непосредственно связанную с бензольным кольцом

Классификация спиртов

По характеру углеродного скелета

- алифатические (предельные и непредельные),
- циклические,
- ароматические

По числу гидроксильных групп

- одноатомные (одна группа ОН в молекуле)
- многоатомные (две и более группы –ОН)

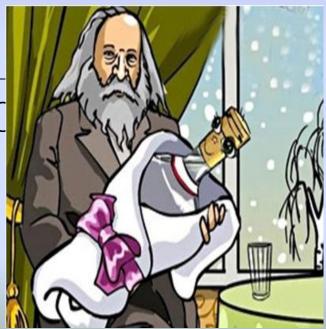
По типу атома углерода, с которым соединена группа ОН

- первичные
- вторичные
- третичные

Предельные одноатомные спирты

$$C_nH_{2n+1}OH$$

Физические свойства спиртов



- Т.кип. метанола (M = 32 г/моль) $+ 65^{\circ}\text{C}$. Т.кип. этана (M = 30 г/моль) 89°C .
- Различие больше, чем на 150°.

Причина - межмолекулярные водородные связи

Водородные связи в спиртах

$$O-H ---- O-H ---- O-H$$
 $CH_3 CH_3 CH_3 CH_3$

Химические свойства спиртов

Взаимодействие щелочных металлов со спиртами:

2HOH + 2Na
$$\longrightarrow$$
 2NaOH + H₂ \uparrow
2CH₃CH₂OH + 2Na \longrightarrow 2 CH₃CH₂ONa + H₂ \uparrow

$$CH_3$$
- CH_2 - $ONa + H_2O \rightarrow CH_3$ - CH_2 - $OH + NaOH$

$$CH_3-CH_2-O-H+NaOH \longrightarrow$$

Взаимодействие спиртов с кислотами

$$C_2H_5$$
 O
 H
 $+$
 H
 C_2H_5
 O
 O
 H

Примеры S_{N-}реакций в спиртах

• НЕОБХОДИМА КИСЛАЯ СРЕДА!

$$\mathrm{CH_3CH_2-OH} + \mathrm{H_2SO_4} \rightarrow \mathrm{CH_3CH_2-O-SO_2-OH} + \mathrm{H_2O}$$
 этилсульфат

Элиминирование

$$H_2SO_4$$
 $CH_3-CH_2-OH \xrightarrow{t} CH_2=CH_2 + H_2O$

Окисление спиртов

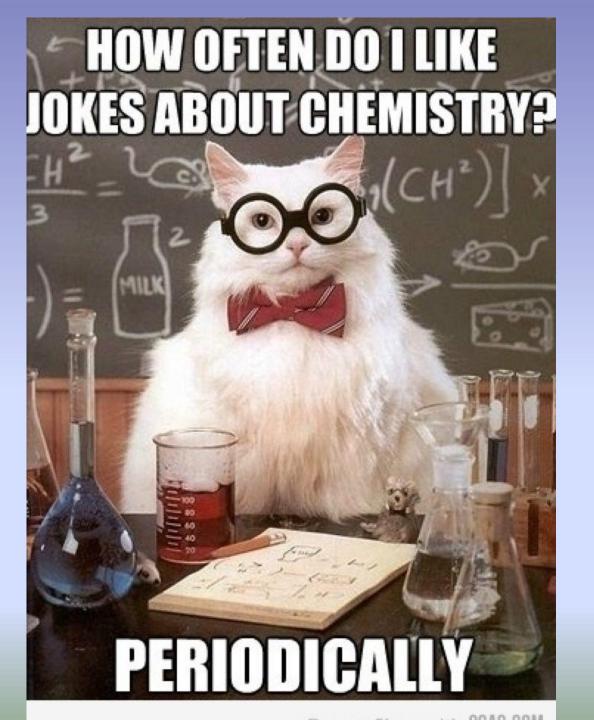
CH₃CH₂OH
$$\stackrel{[O]}{\longrightarrow}$$
 CH₃CH=O $\stackrel{[O]}{\longrightarrow}$ CH₃COOH

этанол

этаналь

уксусная кислота

$$CH_{3}CH_{2}-OH + CuO \rightarrow CH_{3}CH=O + Cu + H_{2}O$$


$$H_{3}C \downarrow CH \downarrow CH \downarrow CH$$

$$CH \downarrow CH \downarrow CH \downarrow CH$$

$$CH \downarrow CH \downarrow CH$$

$$CH \downarrow CH \downarrow CH$$

$$CH \downarrow CH$$

