МЕДИЦИНСКАЯ ХИМИЯ (DRUG DESIGN)

Ольга Николаевна Зефирова

Медицинская ХИМИЯ (medicinal chemistry, drug design)

- специфический раздел органической химии, предметом которого является
 - 1) поиск и создание лекарственных веществ,
- 2) выявление взаимосвязи между строением химических соединений и их биологической активностью,
- 3) решение обратной задачи: конструирование молекулярных структур, обладающих заданной активностью.

Из «Химической энциклопедии»

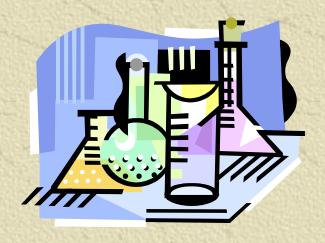
ОСОБЕННОСТИ ОПРЕДЕЛЕНИЯ ТЕРМИНА «ЛЕКАРСТВО» В МЕДИЦИНСКОЙ ХИМИИ

IUPAC: «Лекарством (*drug*) называется любое вещество, представляемое для лечения, облегчения или предотвращения заболеваний людей или животных. Лекарство также может быть использовано для постановки диагноза, корректировки или модификации физиологических функций».

В работах по медицинской химии обычно исходят из того, что лекарство имеет:

а) определенную структуру;

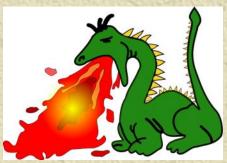
б) конкретную молекулу-мишень (или несколько таких молекул) в организме



Мишень: хемокиновый рецептор, тип 5 (CCR5)

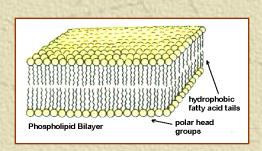
Медицинская химия – специфический раздел органической химии

Болезнь


Клеточная мишень

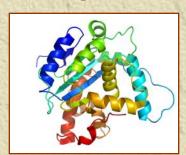
СТРУКТУРА?

Структура лекарства во многом определяется строением его мишени

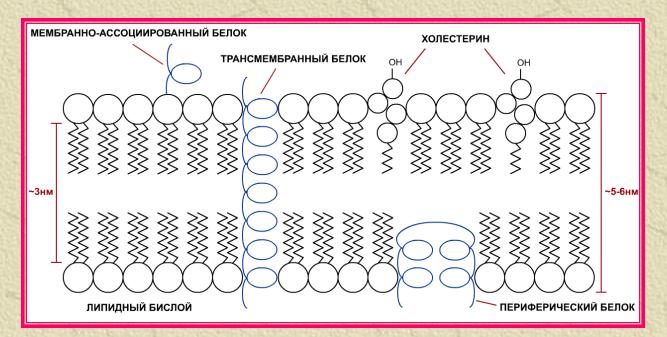


Маалокс (не имеет клеточной мишени)

Мишень (target) — молекула, с которой физиологически активное вещество (лекарство) взаимодействует (связывается) в организме и, как правило, временно изменяет ее функцию.


Основные молекулярные мишени лекарств

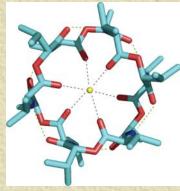
Липиды


Нуклеиновые кислоты

Белки (гликопротеины)

Липиды

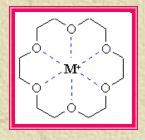
Структура фосфолипида (фосфатидилхолина)

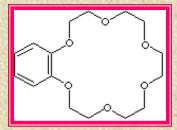


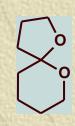
Особенность мембранных структур клетки — двойной слой липидов с неполярной внутренней областью

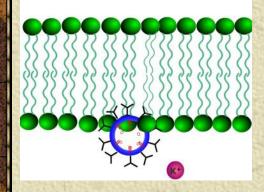
Взаимосвязь структуры лекарства со строением его мишени

Валиномицин

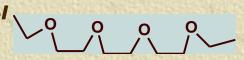



Неконтролируемый перенос ионов через мембрану

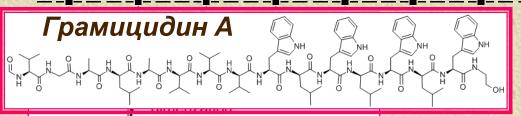

Ионофоры


Структурные особенности:

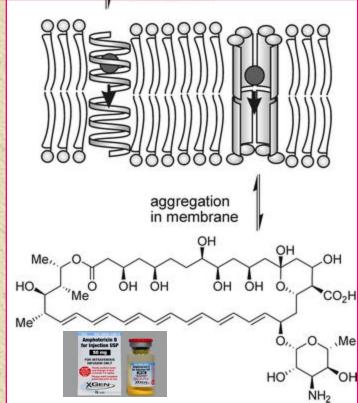
1. Наличие нескольких групп, способных к координации ионов (=0, -0-, =S, -NH- и др.)



- 2. Наличие гидрофобных групп, обеспечивающих транспорт через мембрану
- 4. Цикличность структуры не обязательна

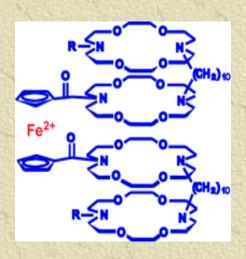


3. Достаточная

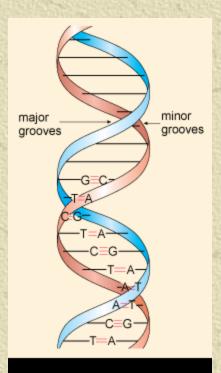

«гибкость»

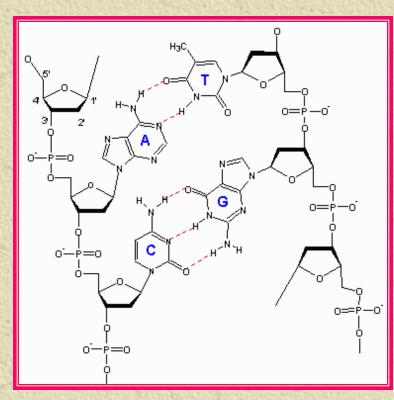
структуры

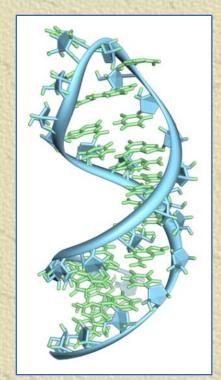
Взаимосвязь структуры лекарства со строением его мишени


Каналообразующие соединения

Амфотерицин В


Структурные особенности:

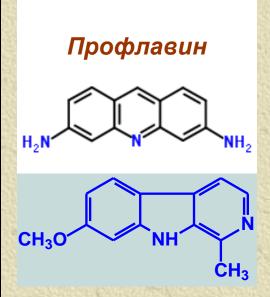

- 1. Баланс гидрофобных и гидрофильных групп
- 2. Способность к образованию канала (определенная «жесткость», «стопочная» структура)

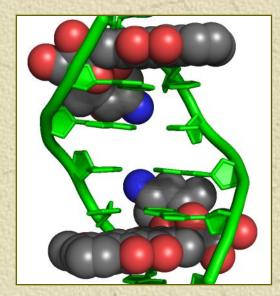


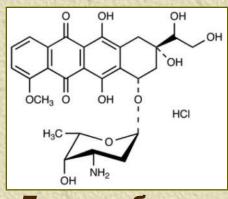
Нуклеиновые кислоты

Строение нуклеиновых кислот

ДНК


РНК

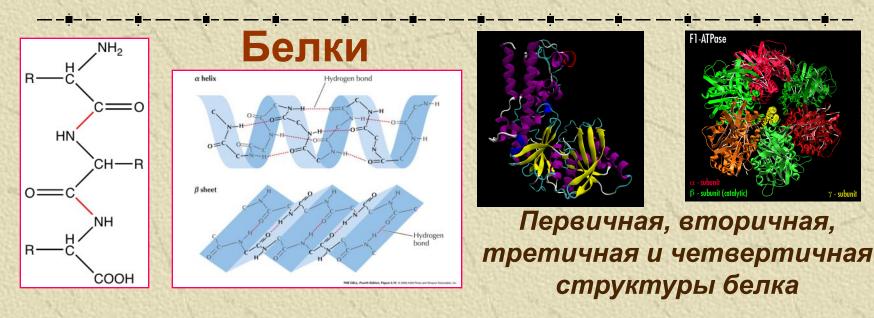

Интеркаляторы в ДНК


Структурные особенности:

1. Наличие плоского фрагмента (обычно три ароматических или гетероароматических кольца)

2. Наличие группировок, обеспечивающих связывание с сахаро-фосфатным остовом молекулы ДНК

Доксорубицин


Взаимосвязь структуры лекарства со строением его мишени

ДНК-алкилирующие соединения

«Сшивка» спиралей ДНК

2. Наличие фрагментов, придающих «сродство» к данной молекулярной мишени Структурные особенности:

1. Наличие алкилирующих группировок

1. Ферменты (белковые макромолекулы, функционирующие как биокатализаторы)

В активном центре фермента происходит связывание субстрата, а затем — его химическая модификация. Лекарственные вещества, действующие на ферменты, обычно (но не всегда) являются их ингибиторами, то есть блокаторами ферментативной активности.

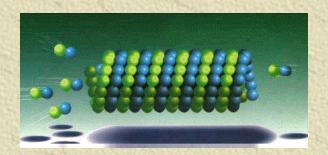
Нейроны

2. Рецепторные белки

Рецептор — это молекула или макромолекула, расположенная внутри или снаружи клетки, и специфически узнающая и связывающая соединение, которое действует как молекулярный передатчик сигнала (эндогенные нейромедиаторы и гормоны (и некоторые другие вещества), эту же функцию могут выполнять и лекарства.

presynaptic neuron

postsynaptic neuron


Kohmakm между нейронами

Если причиной заболевания является недостаточная выработка нейромедиатора или гормона или нарушение их взаимодействия с рецепторами, то в качестве лекарственных веществ создают соответствующие агонисты. Агонист — физиологически активное вещество, которое может взаимодействовать с рецептором и вызывать физиологический или фармакологический ответ, характерный для данного рецептора (активацию фермента, сокращение, расслабление, секрецию, и т. п.). Часто термином агонист называют сами нейромедиаторы или другие сигнальные молекулы.

Если заболевание вызвано избыточной выработкой нейромедиатора или гормона, создают *антагонисты* – блокаторы – их рецепторов.

3. Белки, не выполняющие ферментативной или рецепторной функции

Связывание лекарственных веществ с белковыми молекулами

Лекарство обычно связывается с белковой мишенью в связывающем центре (binding site) (за счет «слабых» взаимодействий — водородных связей, гидрофобных взаимодействий и др.)

Базовой составляющей исследований по дизайну лекарств, действующих на белки, является поиск соответствия между структурой создаваемого вещества и областью его связывания с белком.

I. Выбор соединения-лидера II. Его оптимизация вплоть до разработки лекарства

IUPAC: Соединение-лидер (lead-compound) — это химическое соединение, которое обладает желаемой, интересной, но не оптимизированной биологической активностью. С помощью последующей модификации структуры соединение-лидер в принципе может быть преобразовано в клинически пригодное лекарство.

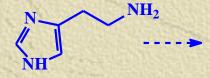
Соединение-лидер – это структурный прототип будущего лекарства.

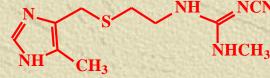
$$_{NH}^{NH_2}$$
 \Longrightarrow $_{CH_3}^{N}$ $_{CH_3}^{N}$ Соединение-лидер (серотонин) $_{CH_3}^{N}$ Лекарство (ондансетрон)

Выбор соединения-лидера

1. Случайно обнаруженное природное или синтетическое вещество

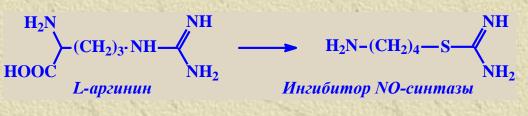
2. Известное лекарство (применяемое в клинике)


Терапевтические копии (me-too drugs)


Разработка побочного свойства

Выбор соединения-лидера

3. Эндогенный лиганд



Гистамин

Циметидин

4. Вещество, найденное в ходе предыдущих разработок

В ходе создания лекарства соединение-лидер может меняться

NDC 0172-7711-60 CIMETIDINE

$$H_2N-(CH_2)_4-S$$
 NH_2
 NH_2
 NH_2
 NH_2

Ингибитор **NO-синтазы**

Более селективный ингибитор *NO-синтазы*

Более липофильный селективный ингибитор NOS

Систематический скрининг

Сплошной или тотальный скрининг (high-throughput screening) — одновременный автоматизированный и миниатюризованный анализ in vitro сотен или тысяч соединений в десятках биологических тестов

Источники молекул для тестирования:

- а) природные вещества,
- б) полученные в лабораториях химические соединения

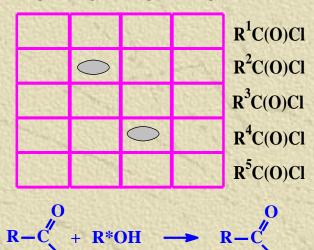
(библиотеки структур фармацевтических

компаний, университетов и др.),

в) комбинаторные библиотеки

Таксол: R = Ac, $R^1 = Bz$ Таксотер: R = H, $R^1 = Boc$

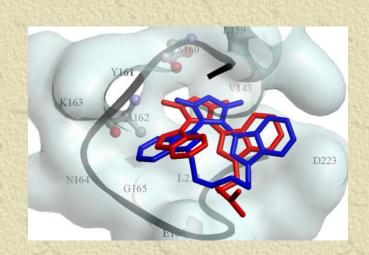
Комбинаторные библиотеки


Комбинаторный синтез — процесс создания очень больших наборов органических соединений посредством комбинирования строительных блоков (building blocks), то есть различных (обычно однотипных) структурных фрагментов (или соединений), которые с помощью несложных химических реакций могут быть введены в большое количество других структур.

Множественный одновременный синтез (или параллельный синтез): наборы соединений одновременно получаются в системах микроячеек (сосудах).

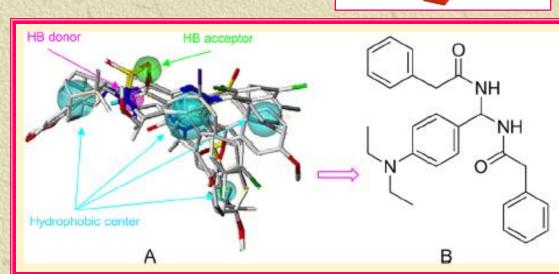
Каждое вещество синтезируется индивидуально, независимо от веществ в соседних ячейках.

R'OH R"OH R"OH R"OH

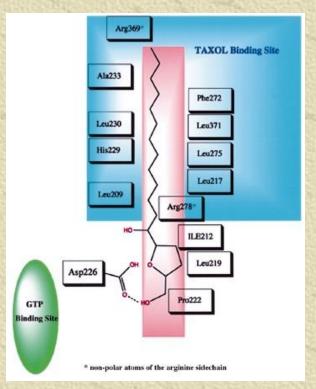


Виртуальный скрининг и компьютерный дизайн

Молекулярное моделирование - методология исследования молекулярных структур и свойств с использованием вычислительной химии и методов графической визуализации (оперирование не реальными молекулами, а их трехмерными изображениями)

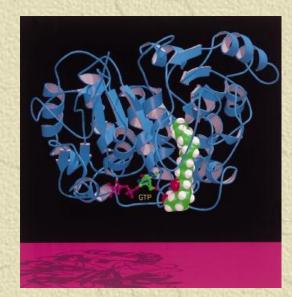

Докинг (docking) — компьютерное совмещение полости молекулы мишени и реальных или гипотетических малых молекул или фрагментов

Виртуальный скрининг


Виртуальный скрининг (virtual screening или in silico screening) — процесс, в ходе которого осуществляют «фильтрацию» структур базы данных (с рассчитанными геометрическими параметрами, зарядом и проч.) через полость их связывания с мишенью.

В структурах базы выявляют подходящие трехмерные фрагменты с оптимальным соответствием связывающему центру.

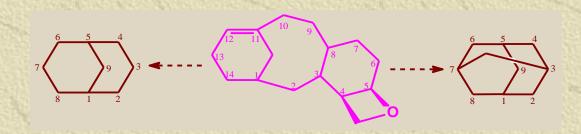
Поиск лигандов белковых молекул - каннабиноидных рецепторов


Дизайн De novo

Дизайн de novo (структурно обоснованный дизайн) - дизайн соединений-лидеров путем конструирования из отдельных структурных фрагментов модели лиганда, помещенного внутрь модели сайта связывания в белке.


Вариант 1: задают подходящий структурный шаблон, а затем последовательно производят «наращивание молекулы».

Вариант 2: структуру лидера создают без шаблона – путем объединения малых фрагментов.


Оптимизация соединения-лидера

Methods Corner DOI: 10.1002/mid/J01000019 Bioisosteric Replacement and Scaffold Hopping in Lead Generation and Optimization Sarah R. Langdon, ** Peter Ettl.** and Nathan Brown**

Биоизостерическая замена

Спасибо за внимание!

