Алюминий, а также его аналоги

IIIA группа

I	II	III	IV	V	VI	VII	VIII
3	4	5	6	7	8	9	10
Li	Be	В	\mathbf{C}	N	O	${f F}$	Ne
6,941	9,012	10,811	12,011	14,007	15,999	18,998	20,180
11	12	13	14	15	16	17	18
Na	Mg	Al	Si	P	${f S}$	Cl	Ar
22,990	24,305	26,982	28,086	30,974	32,066	35,453	39,948
19	20	31	32	33	34	35	36
K	Ca	Ga	Ge	As	Se	Br	Kr
39,098	40,08	69,723	72,61	74,922	78,96	79,904	83,80
37	38	49	50	51	52	53	54
Rb	Sr	In	Sn	Sb	Te	I	Xe
85,467	87,62	114,82	118,71	121,75	127,60	126,905	131,29
55	56	81	82	83	84	85	86
Cs	Ba	Tl	Pb	Bi	Po	At	Rn
132,905	137,33	204,383	207,2	208,980	(209)	(210)	(222)

 ns^2p^1 ct.ok. +3 (+1)

Алюминий в природе

Амазонит $M[AISi_3O_8]$

Лунный камень M[AISi₃O₈]

Аквамарин $Be_3Al_2[Si_6O_{18}]$

Жадеит NaAl[Si₂O₆]

Изумруд $Be_3Al_2[Si_6O_{18}]$

Корунд Al_2O_3

Рубин Al_2O_3

Сапфир Al_2O_3

Гранат

Ca₃Al₂[SiO₄]₃

Топаз $Al_2[SiO_4](OH)_2$

Кошачий глаз BeAl₂O₄

Александрит BeAl₂O₄

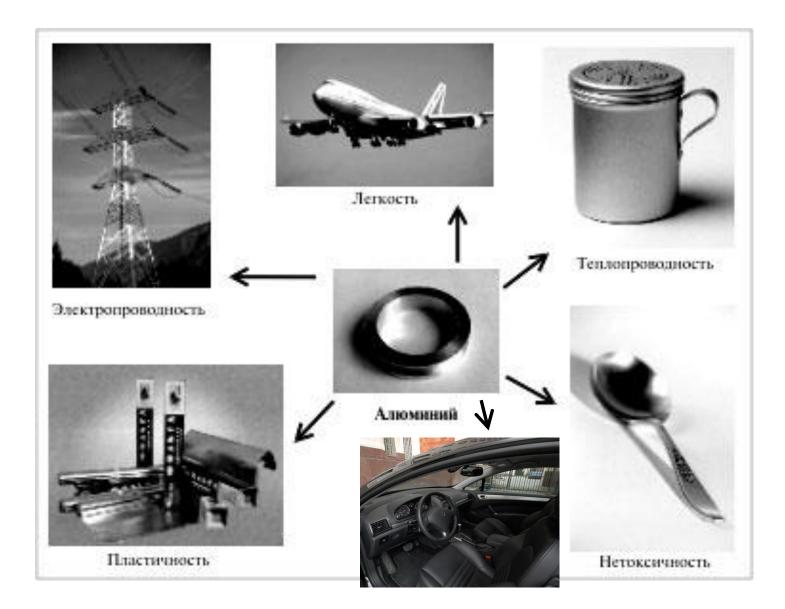
Шпинель MgAl₂O₄

www.jewelon.ru geo.web.ru

Основные минералы

- Боксит $Al_2O_3 \cdot nH_2O$
- Криолит Na₃AIF₆
- Алунит $K_2(SO_4)_3 \cdot 2AI_2O_3 \cdot 6H_2O$
- Нефелин Na₂O·Al₂O₃·2SiO₂

- Бура Na₂B₄O₇·10H₂O
- Борная кислота H₃BO₃
- Ашарит MgHBO₃


https://bigenc.ru/media/2016/10/27/123515 8411/3569.jpg

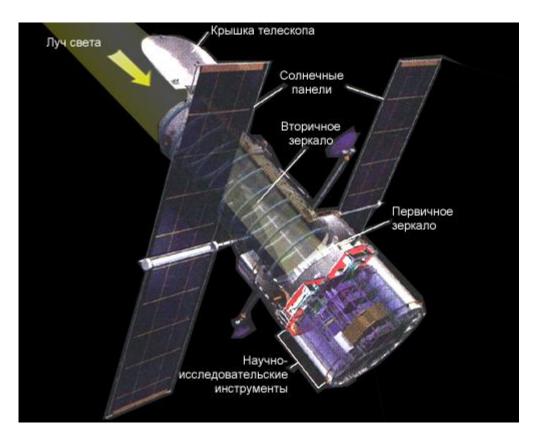
Простые вещества

Элемент	В	Al	Ga	In	T1
$T_{\Pi\Pi}$, ${}^{\circ}C$	2075	660	29,8	156,4	304
$T_{\text{кип.}}$, ${}^{\circ}C$	3700	2500	2205	2000	1475
d, Γ/cm^3	2,34	2,70	5,91	7,31	11,85

Для чего нужен алюминий

Изделия из алюминиевых сплавов. Стратегический бомбардировщик ТУ-160

Максимальная взлетная масса	275000 кг.
Максимальная масса боевой нагрузки	До 40000 кг.
Максимальная скорость полета	2200 км/ч
Потолок	18000 м.
Дальность полета	12300 км.


58% конструкции самолета выполнено из алюминиевых сплавов, 38% — из титановых, 15% — из высококачественных стальных сплавов и 3% — из композиционных материалов

Металлический алюминий. Зеркала

Орбитальный телескоп-рефлектор "Хаббл" массой более 12 т использует стеклянное зеркало диаметром 2,4 м, покрытое слоем Al толщиной 70 нм, с защитным слоем MgF_2 толщиной 25 нм

Открытая астрономия 2.5

Химические свойства Al

- AI + $O_2 \to AI_2O_3$ (при поджигании)
- Al + S \rightarrow Al₂S₃ (t)
- AI + $N_2 \rightarrow AIN$ (tt)
- Al + C \rightarrow Al₄C₃ (tt)

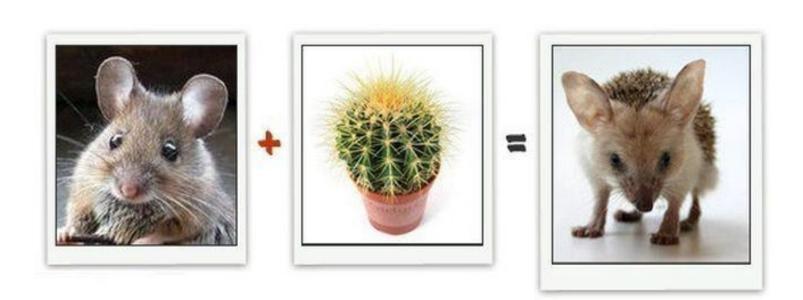
- AI + $F_2 \rightarrow AIF_3$
- Al + $Cl_2 \rightarrow AlCl_3$ (t)
- AI + Br₂ \rightarrow ?

Алюминотермия:

$$Fe_2O_3 + 2AI = AI_2O_3 + 2Fe$$

 $\Delta H = -854 \text{ кДж}$
 $3K_2O + 2AI = AI_2O_3 + 6K$
 $\Delta H = -590 \text{ кДж}$

Металлический алюминий. Ракетное топливо


 $6NH_4CIO_4 + 10AI = 3N_2 + 9H_2O + 6HCI + 5AI_2O_3$

Al, Be – амфотерность

- Be + 2HCI = BeCl₂ + H₂ ([Be(H₂O)₄]²⁺)
- Be + $4NaOH = Na_2[Be(OH)_4] + H_2$

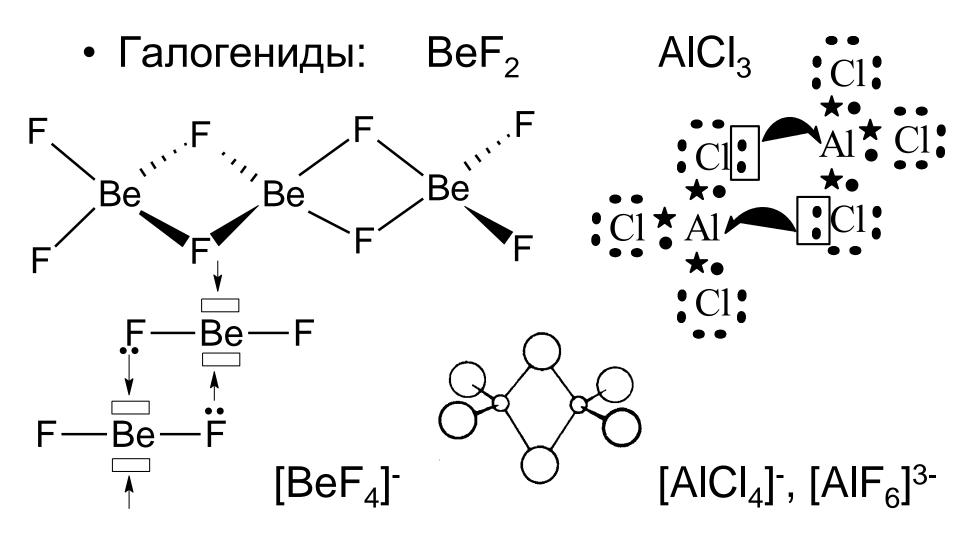
- $2AI + 6HCI = 2AICI_3 + 3H_2$
- $2AI + 6H_2O + 2NaOH = 2Na[AI(OH)_4] + 3H_2$

AI, Be – диагональное сходство

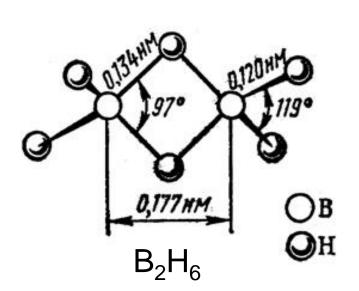
- Причина сходные R
- Оксиды Al_2O_3 $T_{пл} = 2050$ °C, BeO 2530°C
- + кислоты, щелочи только сплавление!

$$BeO + 3SiO_2 = BeSiO_3$$

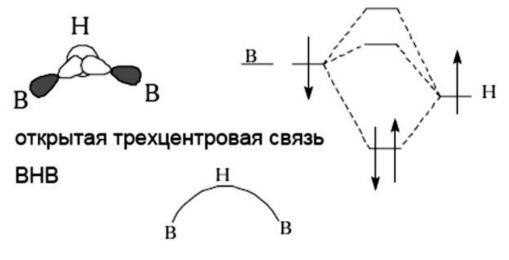
$$Al_2O_3 + 2NaOH = 2NaAlO_2 + H_2O \uparrow$$


$$Al_2O_3 + Na_2CO_3 = 2NaAlO_2 + CO_2$$

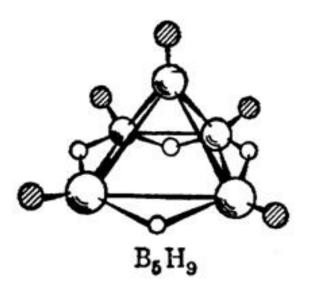
• Пассивация

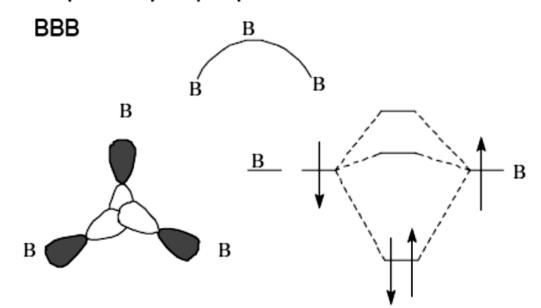

$$2AI + 3H_2SO_{4 \text{ конц.}} = AI_2O_3 + 3SO_2^{\uparrow} + 3H_2O$$

Be + $2HNO_{3 \text{ конц.}} = BeO + $2NO_2^{\uparrow} + H_2O$$


• Гидроксиды

$$[Be(H_2O)_4]^{2+} \xrightarrow{OH^-} Be(OH)_2 \downarrow \xrightarrow{OH^-} [Be(OH)_4]^{2-}.$$

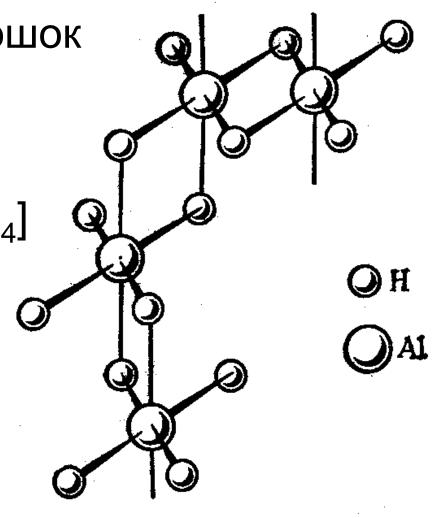



Al и B – тоже аналоги (гидриды)

открытая трехцентровая связь

Al и B – тоже аналоги (гидриды)

(AIH₃)_x – белый порошок
 В эфире:


• LiH + AlH₃ = Li[AlH₄]

• $2LiH + B_2H_6 = 2Li[BH_4]$

В воде:

• $B_2H_6 + 6H_2O =$ = $2H_3BO_3 + 6H_2$

• $AIH_3 + 3H_2O =$ = $AI(OH)_3 + 3H_2$

Al и B – тоже аналоги

• Гидроксокомплексы

$$H_3BO_3 + KOH = K[B(OH)_4]$$

Al(OH)₃ + KOH = K[Al(OH)₄] (и K₃[Al(OH)₆])

- Галогениды
 - Молекулярные решетки
 - Электронодефицитные соединения
 - $-BF_3 + HF = H[BF_4]$
 - -AIF₃ + NaF = Na[AIF₄] (и Na₃[AIF₆])

B, Si – диагональное сходство (галогениды)

• Агрегатное состояние

SiF ₄	SiCl ₄	SiBr ₄	Sil ₄
BF ₃	BCl ₃	BBr ₃	BI_3

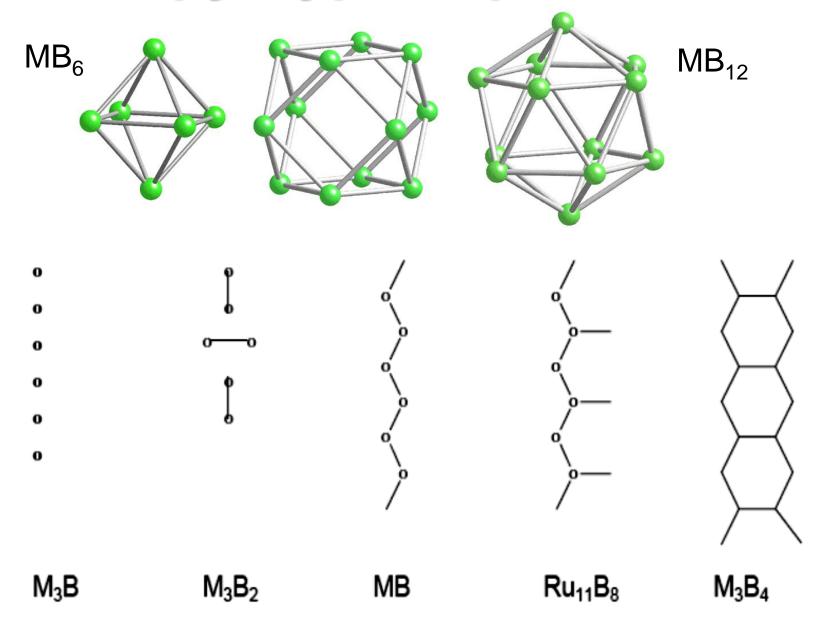
тв ж газ

• Гидролиз

$$BHal_3 + 3H_2O = H_3BO_3 + 3HHal$$

 $SiHal_4 + (2+n)H_2O = SiO_2 \cdot nH_2O + 4HHal$

• Комплексы


B, Si – диагональное сходство (бориды и силициды)

- Ионные взаимодействие с водой $Ca_2Si + 4HCl = SiH_4 + 2CaCl_2$ $Mg_3B_2 + 6HCl = 3MgCl_2 + B_2H_6$
- Атомные инертные, твердые, тугоплавкие

Состав	B ₄ C	TiB ₂	ZrB_2	HfB_2	BN	NbB_2
T _{nn.} , °C	2456	2980	3040	3250	3000	3000

M₄B, M₂B, MB, M₃B₄, MB₂, MB₆, MB₁₂

Структура боридов

B, Si – диагональное сходство (гидриды)

- Физические свойства
- Многообразие

```
бораны: газ. B_2H_6, жид. B_4H_{10}, B_5H_9, B_5H_{11}, B_6H_{10} ... тв. B_{10}H_{14}; силаны Si_nH_{2n+2}: газ. SiH_4, Si_2H_6, жид. Si_3H_8, тв. – высшие
```

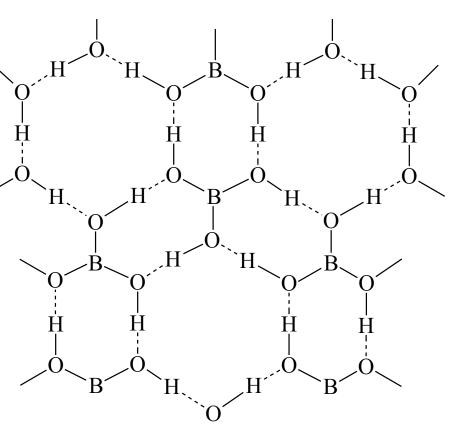
• Восст. свойства (воспламенение)

$$B_2H_6 + 3O_2 = 2H_3BO_3 + Q$$

 $Si_2H_6 + 3.5 O_2 = 2SiO_2 + 3H_2O$

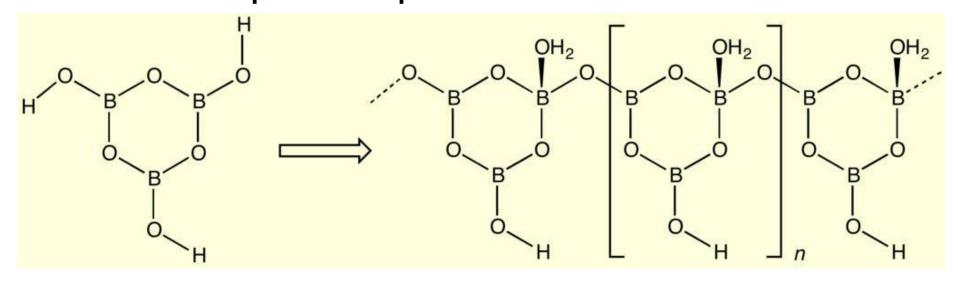
B, Si – диагональное сходство (кислоты)

Ортоформа растворима лучше
 В(ОН)₃, Si(ОН)₄


• Термическое разложение

 $H_3BO_3 \rightarrow HBO_2 (t)^2$

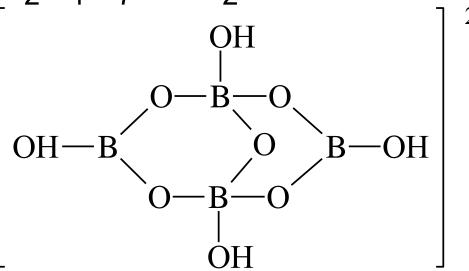
 $HBO_2 \rightarrow B_2O_3$ (t)


 $xSiO_2 \cdot yH_2O \rightarrow$

 \rightarrow SiO₂ (t)

B, Si – диагональное сходство (кислоты)

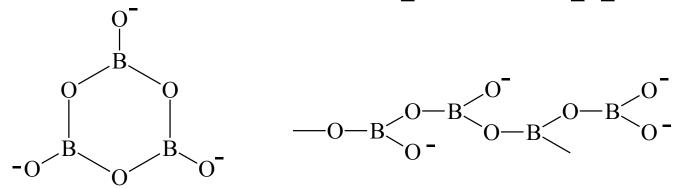
• Полимерное строение метакислот



• Слабые $pK^{a}(H_{3}BO_{3}) = 9,15$ $pK^{a}(H_{4}SiO_{4}) = 9,9$

B, Si – диагональное сходство (бораты и силикаты)

- В структуре треугольники BO_3^{3-} и тетраэдры BO_4^{5-}
- Островные: котоит $Mg_3(BO_3)_2$.
- Пиробораты: бура $Na_2B_4O_7 \cdot 10H_2O$


$$Na_{2}[B_{4}O_{5}(OH)_{4}]\cdot 8H_{2}O$$

 $\rightarrow Na_{2}[B_{4}O_{5}(OH)_{4}] +$
 $+ 8H_{2}O (t)$

2-

B, Si – диагональное сходство (бораты и силикаты)

- Циклы метаборатов: KBO₂, NaBO₂
- Цепи метаборатов: LiBO₂, Ca(BO₂)₂

Перлы:

 $Na_2B_4O_7 + M^{n+} \rightarrow NaBO_2 \cdot Co(BO_2)_2$ синий, $NaBO_2 \cdot Cr(BO_2)_3$ зеленый, $NaBO_2 \cdot Mn(BO_2)_2$ фиолетовый, $NaBO_2 \cdot Ni(BO_2)_2$ бурый