ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ«РОСАТОМ» ГНЦ РФ ОАО «НИФХИ ИМ. Л.Я.КАРПОВА», Г.МОСКВА СУНЦ МГУ, Г. МОСКВА

Определение и исследование оптических характеристик ядерных фильтров, модифицированных массивами нано- и микрочастиц серебра

ДОКЛАДЧИК: МАСЛЁНКОВА ЕЛЕНА, СУНЦ МГУ

НАУЧНЫЕ РУКОВОДИТЕЛИ:

ЖЕЛТОВА А. В., студент ФББ МГУ им. М.В. Ломоносова

ЦЕЛЬ

Цель - определить взаимосвязь между характеристиками аэрозоля, микрошероховатостью поверхности и оптическими свойствами покрытий на основе НМЧ серебра, осаждённых на поверхности ядерных фильтров (ЯФ), посредством изучения спектров оптического поглощения/пропускания образцов.

ЗАДАЧИ

- методом сухого аэрозольного осаждения осуществить синтез опытной партии образцов тонких плёнок пористого серебра на поверхности подложек из ЯФ;
- методами оптической спектроскопии исследовать закономерности прохождения света при взаимодействии с образцами ЯФ;
- на основании полученных экспериментальных данных произвести расчёт толщины и оптических характеристик пористых плёнок серебра на поверхности ЯФ;
- осуществить теоретический анализ и математическое моделирование закономерностей прохождения света сквозь пористые плёнки серебра

АКТУАЛЬНОСТЬ

- Стерилизация биологических сред
- Изготовление индикаторных матриц
- Изготовление антиотражающих покрытий

ЯДЕРНЫЕ ФИЛЬТРЫ

Ядерные фильтры – тонкие полимерные плёнки, облученные потоками тяжёлых ионов и подвергшиеся химической обработке, на поверхности которых в результате образуется пористая структура.

В настоящее время можно получать ЯФ с размерами пор от 4 нм до ~10 мкм

ЯФ устойчивы по отношению к агрессивным средам, пассивны в биологическом отношении, они не разрушаются бактериями

МЕТОДЫ НАПЫЛЕНИЯ

Образцы ЯФ, модифицированных Ад-НМС

Условия эксперимента, характеристика аэрозоля	Образец		
	Ад-ЯФ-1	Ад-ЯФ-2	Ад-ЯФ-3
Время напыления, час	2	2	2
Концентрация частиц серебра в аэрозоле, см ³	1,56·10 ⁵	3,34·10 ⁶	4,38·10 ⁶
Среднеквадратичная дисперсия распределения частиц Ад по размерам, нм	8·10 ⁻⁹	5,5·10 ⁻⁹	6,6·10 ⁻⁹
Диаметр частиц Аg, соответствующий max распределения по размерам, нм	49	28	30

Сравнительная таблица методов напыления

МЕТОДЫ НАПЫЛЕНИЯ

РЭМ изображения Ад-НМС

Условия эксперимента, характеристика аэрозоля	Образец		
	Ag-ЯФ-1	Ад-ЯФ-2	Ад-ЯФ-3
Время напыления, час	2	2	2
Концентрация частиц серебра в аэрозоле, см ³	1,56·10 ⁵	3,34·10 ⁶	4,38·10 ⁶
Среднеквадратичная дисперсия распределения частиц Ад по размерам, нм	8·10 ⁻⁹	5,5·10 ⁻⁹	6,6·10 ⁻⁹
Диаметр частиц Аg, соответствующий max распределения по размерам, нм	49	28	30

Сравнительная таблица методов напыления

ОСНОВНЫЕ РЕЗУЛЬТАТЫ

- Обнаружено влияние ППП, образующихся при прохождении света сквозь плёнки пористого серебра, на дифракцию и интерференцию света в образцах Ад-ЯФ
- Обнаружена взаимосвязь сдвига ИК в спектрах оптического поглощения образцов Ад-ЯФ, модифицированных массивами НМЧ серебра, с толщиной нанесённого покрытия
- Предложен подход для определения характеристик нано-/микроструктурированных плёнок металлов на поверхности матовых подложек

СПАСИБО ЗА ВНИМАНИЕ

