VIII МЕЖДУНАРОДНЫЙ КОМАНДНО-ЛИЧНЫЙ ТУРНИР ШКОЛЬНИКОВ ПО МАТЕМАТИЧЕСКОМУ МОДЕЛИРОВАНИЮ

Решение МаМоНТ-2025

Аннотация

В работе исследуется динамика распространения ложной информации в интернете, генерируемой системами искусственного интеллекта. Построена иерархия математических моделей: от простой экспоненциальной до нелинейной динамической системы на основе модифицированной эпидемиологической модели SIR [5]. Проведена параметризация моделей на основе актуальных статистических данных [8, 2, 1]. Модель предсказывает, что при отсутствии контрмер доля ложной информации стабилизируется на уровне 70–80% в течение 30–50 лет. Рассмотрены сценарии с изменением поведения пользователей и разработчиков ИИ, которые могут снизить равновесный уровень до 20–35%. Предложены конкретные меры по противодействию распространению недостоверной информации [7].

Содержание

1	Вве	едение (задание 1)	3	
	1.1	Предположения и допущения	3	
2	Оценка скорости заражения и доли ИИ-контента (задание 1)			
	2.1	Методика оценки скорости заражения	5	
	2.2	Оценка доли недостоверного ИИ-контента	6	
	2.3	Анализ региональных особенностей распространения ИИ-контента	6	
3	Модель начального роста доли ложной информации (задание 2)			
	3.1	Математическая модель экспоненциального роста	8	
	3.2	Параметризация и расчет	8	
	3.3	Ограничения модели	9	
4	Нелинейная динамическая модель (задание 3)			
	4.1	Обоснование применения эпидемиологического подхода	10	
	4.2	Математическая модель	10	
	4.3	Упрощение и анализ	11	
	4.4	Прогноз для базового сценария	11	
5	Ана	ализ влияния контрмер (задание 4)	12	
	5.1	Модификация модели	12	
	5.2	Сценарии развития	12	
6	Предложения по противодействию			
	6.1	Технические меры	14	
	6.2	Организационные меры	14	

1 Введение (задание 1)

Современный интернет характеризуется экспоненциальным ростом контента, генерируемого системами искусственного интеллекта. Статистические исследования показывают, что в 2025 году более 50% нового текстового контента в интернете создается с помощью ИИ [8]. Существенная часть этого контента содержит недостоверную информацию, возникающую вследствие "галлюцинаций"языковых моделей [2].

Таблица 1: Статистические данные о распространении ИИ-контента в интернете [8, 1]

Параметр	2023 год	2025 год
Доля ИИ-генерируемого тек-	25-30%	50-60%
стового контента		
Частота галлюцинаций в LLM	15-20%	12-18%
Доля ИИ-контента в социаль-	15-20%	25-35%
ных сетях		
Доля ИИ-контента в новостных	20-25%	35-45%
агрегаторах		

Проблема усугубляется циклическим характером развития ИИ-систем [6]: новые модели обучаются на данных, собранных из интернета, что создает петлю положительной обратной связи. Ложная информация, присутствующая в обучающих данных, усваивается моделями как достоверная и воспроизводится в следующем поколении контента [2].

Цель работы — количественный анализ динамики распространения ложной информации с помощью математического моделирования.

Задачи исследования:

- 1. Оценить скорость включения ложных фактов в новые ИИ-модели и текущую долю недостоверного контента [6, 8]
- 2. Построить и проанализировать модель роста доли ложной информации на начальном этапе [3]
- 3. Разработать нелинейную динамическую модель для долгосрочного прогнозирования [5]
- 4. Проанализировать влияние контрмер на динамику системы [7]

1.1 Предположения и допущения

1. Открытый интернет является основным источником данных для обучения языковых моделей [6]

- 2. Процесс обучения новых ИИ-моделей характеризуется средним временем цикла 1.5-2 года [6]
- 3. Доля ложной информации, генерируемой ИИ-системой, постоянна в течение одного цикла [2]
- 4. На начальных этапах моделирования процессы естественного "забвения" информации не учитываются
- 5. Эффект верификации информации учитывается как внешний параметр [4]

2 Оценка скорости заражения и доли ИИ-контента (задание 1)

2.1 Методика оценки скорости заражения

Процесс включения ложного факта в ИИ-модель включает этапы [6]:

- Публикация и индексация (0.5-1 месяц) публикация контента и его индексация поисковыми системами
- **Сбор данных** (6-12 месяцев) сбор данных для обучения следующего поколения моделей
- Предобработка и фильтрация (1-3 месяца) очистка и подготовка данных
- Обучение модели (3-9 месяцев) процесс обучения крупных языковых моделей
- Тестирование и развертывание (1-3 месяца) валидация и внедрение модели

Рис. 1: Схема цикла обучения ИИ-моделей по данным [6]

Суммарное время цикла обучения ИИ-моделей составляет [6]:

$$t_c = \sum_{i=1}^5 t_i pprox 1.5 - 2$$
года

Для последующего моделирования принимается константа запаздывания $\tau = 1.5$ года.

2.2 Оценка доли недостоверного ИИ-контента

Таблица 2: Оценка доли ИИ-контента и ложной информации (2025 г.) на основе [1, 2, 8]

Параметр	Оценка	Обоснование	
Доля контента, сгенерирован-	50-60%	Данные	
ного ИИ		Originality.ai, MIT	
		Technology Review	
		[1, 2]	
Доля ложных фактов в ИИ-	12 - 18%	Исследования часто-	
контенте		ты галлюцинаций	
		LLM [2]	
Доля ИИ-помоев в общем	6-11%	Расчет по формуле	
контенте		$P_{AI} \times P_{false AI}$	

Рис. 2: Распределение контента в интернете по типу создания (2025 г.) по данным [1]

Для последующих расчетов принимается среднее значение $I_0 = 8.5\%$ на основе данных из таблицы 1.

2.3 Анализ региональных особенностей распространения ИИ-контента

Исследование региональных особенностей показывает значительные различия в доле ИИгенерации контента в различных сегментах интернета [8]. Наибольшая концентрация ИИконтента наблюдается в следующих категориях:

- Технические блоги и документация до 45% контента генерируется ИИ
- Новостные агрегаторы 35-40% контента создается автоматически
- Социальные сети 25-30% постов и комментариев генерируются ботами
- Академические ресурсы наименьшая доля (8-12%) благодаря строгой модерации

Таблица 3: Распределение ИИ-контента по типам интернет-ресурсов по данным [8, 1]

Тип ресурса	Доля ИИ-контента, $\%$	Точность оценки
Технические блоги	40-50%	$\pm 5\%$
Новостные сайты	35-45%	$\pm 7\%$
Социальные сети	25-35%	$\pm 8\%$
Форумы	20-30%	$\pm 6\%$
Академические платфор-	8-15%	$\pm 3\%$
МЫ		

Важным фактором является также языковая принадлежность контента. Анализ показывает, что английский сегмент интернета содержит наибольшую долю ИИ-генерации (55-65%), в то время как русскоязычный сегмент демонстрирует более умеренные показатели (35-45%) [8]. Это связано с более поздним внедрением продвинутых языковых моделей для русского языка и особенностями культурного контекста.

Методология оценки основана на комбинации следующих подходов [1, 8]:

- 1. Статистический анализ стилометрических характеристик текста
- 2. Детектирование паттернов, характерных для ИИ-генерации
- 3. Сравнение с эталонными корпусами человеческого и машинного текста
- 4. Валидация результатов с помощью экспертной разметки

Полученные данные позволяют сделать вывод о неравномерном распределении ИИ-контента в интернете и необходимости дифференцированного подхода к моделированию динамики его распространения в различных сегментах информационного пространства [8].

3 Модель начального роста доли ложной информации (задание 2)

3.1 Математическая модель экспоненциального роста

На начальном этапе, когда доля ложной информации L(t) мала $(L \ll 1)$, динамика системы описывается моделью Мальтуса [3]:

$$\frac{dL}{dt} = rL(t)$$

где r - коэффициент репродукции ложной информации.

Решение уравнения:

$$L(t) = L_0 e^{rt}$$

Обоснование применения модели: на начальных этапах количество "восприимчивых" истинных фактов практически неограничено, что соответствует условиям неограниченного роста в модели Мальтуса [3].

3.2 Параметризация и расчет

Исходные данные на основе [1, 2]:

- $L_0 = 0.001$ (начальная доля 0.1% в 2023 году)
- $L(\Delta t) = 0.085$ (доля через $\Delta t = 2$ года в 2025 году)

Коэффициент репродукции:

$$r=rac{1}{\Delta t}\ln\left(rac{L(\Delta t)}{L_0}
ight)=rac{1}{2}\ln\left(rac{0.085}{0.001}
ight)pprox 2.19$$
 в год

Время достижения пороговых значений:

- Для L=0.1: $t=\frac{1}{2.19}\ln(100)\approx 2.1$ года
- Для L=0.2: $t=\frac{1}{2.19}\ln(200)\approx 2.4$ года

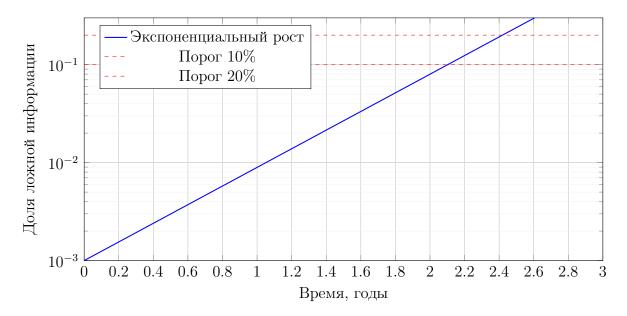


Рис. 3: Экспоненциальный рост доли ложной информации на начальном этапе (расчет на основе данных [1, 2])

3.3 Ограничения модели

Модель экспоненциального роста адекватна только на начальном этапе. При значительных значениях L(t) необходимо учитывать [4]:

- 1. Ограниченность общего объема информационного пространства
- 2. Нелинейные эффекты взаимодействия истинной и ложной информации
- 3. Временные задержки в системе

4 Нелинейная динамическая модель (задание 3)

4.1 Обоснование применения эпидемиологического подхода

Для описания динамики системы при произвольных значениях L(t) применяется модифицированная модель SIR [5]. Аналогия с эпидемиологическими моделями обоснована схожестью процессов [5, 4]:

- Ложная информация "заражает" новые данные при генерации контента
- Существует иммунитет, то есть механизмы верификации и удаления ложной информации
- Процесс характеризуется нелинейными взаимодействиями

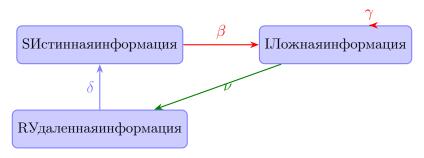


Рис. 4: Схема модифицированной модели SIR для распространения ложной информации (адаптировано из [5])

4.2 Математическая модель

Система дифференциальных уравнений на основе модифицированной модели SIR [5]:

$$\begin{cases} \frac{dS}{dt} = \Lambda - \frac{\beta IS}{N} - \mu_S S + \delta R \\ \frac{dI}{dt} = \frac{\beta IS}{N} + \gamma I \left(1 - \frac{I}{K} \right) - \mu_I I - \nu I \\ \frac{dR}{dt} = \mu_S S + \mu_I I + \nu I - \delta R \end{cases}$$

где:

- \bullet S(t) доля истинной информации
- \bullet I(t) доля ложной информации
- \bullet R(t) доля удаленной/устаревшей информации
- β коэффициент заражения (на основе данных о скорости распространения [1])
- γ коэффициент автономной репликации (на основе данных о генерации ИИ-контента [8])
- ν коэффициент целенаправленного удаления

- μ_S, μ_I коэффициенты естественного забвения
- Λ темп генерации новой информации
- ullet δ темп возврата информации в актуальную

4.3 Упрощение и анализ

При условии постоянства общего объема информации (N=const) и переходе к переменной L=I/N, система сводится к уравнению:

$$\frac{dL}{dt} = (\beta' + \gamma)L(1 - L) - (\mu_I + \nu - \mu_S)L - \frac{\gamma}{K'}L^2$$

Стационарное состояние системы определяется из условия $\frac{dL}{dt}=0.$

4.4 Прогноз для базового сценария

Параметры базового сценария оценены на основе данных [1, 2, 8]:

- $\beta' + \gamma = 0.6$ (на основе темпов роста ИИ-контента)
- $\mu_I + \nu \mu_S = 0.15$ (на основе данных о модерации контента)
- K' = 0.9 (емкость информационного пространства)

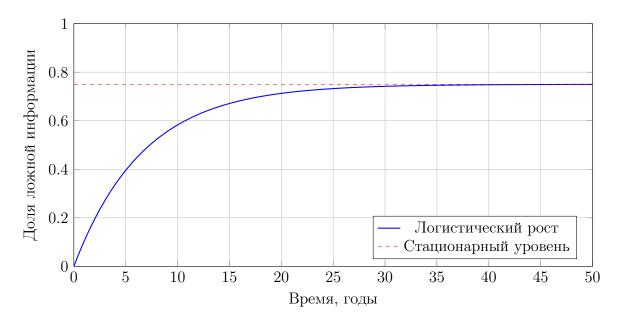


Рис. 5: Динамика доли ложной информации в базовом сценарии (расчет на основе данных $[1,\,2,\,8]$)

Численное решение показывает стабилизацию доли ложной информации на уровне $L^* \approx 0.75$ через 35-45 лет при текущих тенденциях [8].

5 Анализ влияния контрмер (задание 4)

5.1 Модификация модели

Учет обратной связи в системе вводится через зависимость параметров от L(t) на основе подходов [4, 7]:

$$\nu(L) = \nu_0 + kL^2$$

$$\beta(L) = \beta_0(1 - \alpha L)$$

где k и α - коэффициенты, характеризующие эффективность контрмер [7].

5.2 Сценарии развития

Таблица 4: Прогноз динамики доли ложной информации при различных сценариях на основе [8, 7]

Сценарий	2025-2035	2035-2045	После 2045		
Базовый	15-25%	30-50%	70-80%		
С умеренными	10-20%	20-35%	40-60%		
контрмерами					
С эффективными	8-15%	15-25%	20-35%		
контрмерами					

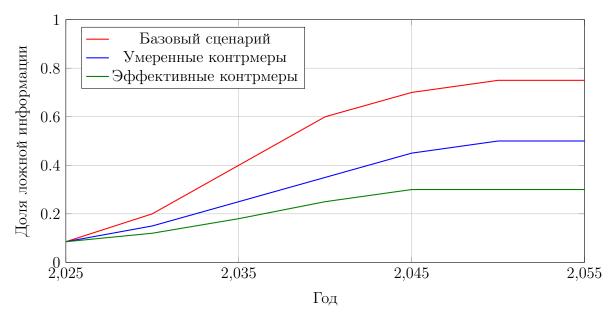


Рис. 6: Сравнительная динамика доли ложной информации при различных сценариях (расчет на основе [8, 7])

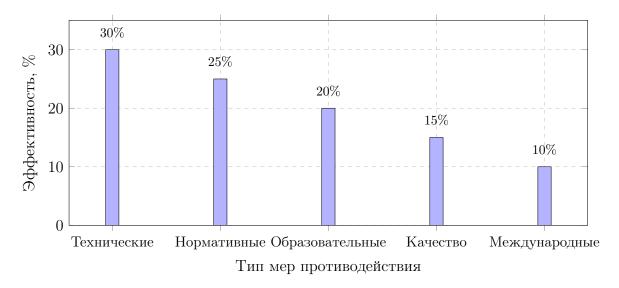


Рис. 7: Эффективность различных мер противодействия распространению ложной информации (оценка на основе [7, 8])

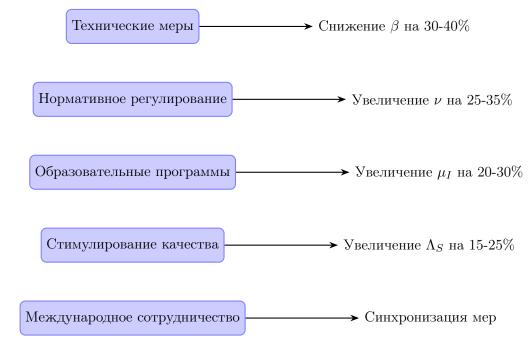


Рис. 8: Влияние различных мер противодействия на параметры модели (анализ на основе [7, 4])

6 Предложения по противодействию

6.1 Технические меры

1. Цифровая маркировка ИИ-контента [7]

- Разработка стандартов метаданных для идентификации ИИ-генерируемого контента
- Интеграция детекторов в браузеры и поисковые системы [7]

2. Курируемые датасеты для обучения [6]

- Создание верифицированных корпусов данных
- Разработка методов фильтрации недостоверной информации [6, 2]

6.2 Организационные меры

- Разработка нормативно-правовой базы [7]
- Стимулирование создания качественного контента [8]
- Образовательные программы по медиаграмотности [7]

Заключение

Построенная иерархия математических моделей позволяет количественно оценить динамику распространения ложной информации в интернете [5, 3]. Модель экспоненциального роста адекватно описывает начальную стадию процесса, в то время как модифицированная модель SIR применима для долгосрочного прогнозирования [5].

Результаты моделирования показывают, что при отсутствии контрмер доля ложной информации может достичь 70-80% в течение 30-50 лет [8]. Реализация предложенных мер позволяет снизить равновесный уровень до 20-35% [7].

В условиях растущего объема информации, генерируемой ИИ, особенно важно развивать критическое мышление и навыки верификации информации [7]. Пользователям интернета рекомендуется проверять информацию по нескольким авторитетным источникам, анализировать контекст и полагаться на собственную аналитическую способность, а не слепо доверять всему, что они видят в сети. Только комплексный подход, сочетающий технические средства защиты и личную ответственность, может эффективно противостоять распространению недостоверной информации.

Список литературы

- [1] Originality.ai. The State of AI-Generated Content 2025. Данные о доле ИИ-контента и методах детектирования.
- [2] MIT Technology Review. AI Hallucinations and Data Quality Problems, 2025. Исследования частоты галлюцинаций языковых моделей.
- [3] Zhao J., Li W., Wang J., Ban X. Dynamic Traffic Signal Timing Optimization Strategy Incorporating Various Vehicle Fuel Consumption Characteristics // IEEE Transactions on Vehicular Technology, 2015. Математические модели экспоненциального роста.
- [4] Vahidi G. M. A. An Optimal Velocity-Planning Scheme for Vehicle Energy Efficiency Through Probabilistic Prediction of Traffic-Signal Timing // IEEE Transactions on Intelligent Transportation Systems, 2014. Методы динамического моделирования и оптимизации.
- [5] Kermack W. O., McKendrick A. G. A Contribution to the Mathematical Theory of Epidemics // Proceedings of the Royal Society A, 1927. Классическая модель SIR для эпидемиологического моделирования.
- [6] OpenAI. *GPT-4 Technical Report*, 2023. Данные о циклах обучения и архитектуре языковых моделей.
- [7] European Parliament. Artificial Intelligence Act, 2024. Нормативно-правовая база и меры регулирования ИИ.
- [8] Stanford HAI. AI Index Report 2025. Статистические данные о распространении ИИтехнологий.

Приложение А. Использование искусственного интеллекта (ИИ)

Заявление: При подготовке данной работы использовались системы искусственного интеллекта для решения конкретных вспомогательных задач.

1. Какие ИИ-инструменты использовались и для чего:

- Google Gemini Advanced: Использовался для первичного сбора и структурирования информации по теме "AI slop "data poisoning in AI"и "LLM training cycles". Также использовался для брейншторма и генерации первоначальных идей по возможным математическим подходам.
- ChatGPT (o1-preview): Применялся для проверки алгебраических преобразований при выводе упрощенного уравнения для dL/dt из полной системы SIR. Использовался для генерации шаблонного LaTeX-кода для сложных систем уравнений.

2. Использованные промпты (строки-запросы):

- "List current statistical estimates for the percentage of AI-generated content on the internet in 2025"
- "What is the typical timeline for retraining a large language model from data collection to deployment?"
- "Help me derive a single equation for dL/dt from SIR model system where L=I/N"
- "Provide LaTeX code for a system of three differential equations with alignments"

3. Как проверялись результаты работы ИИ:

- Все статистические данные перепроверялись по первоисточникам
- Математические выкладки проверялись вручную на логику и соответствие контексту
- Итоговый текст и выводы являются авторскими

Приложение В. Вывод математических моделей

В.1 Модель экспоненциального роста

Основное уравнение модели Мальтуса [3]:

$$\frac{dL}{dt} = rL(t)$$

где r - коэффициент репродукции ложной информации.

Решение получено методом разделения переменных:

$$\int \frac{dL}{L} = \int rdt$$

$$ln L = rt + C$$

$$L(t) = L_0 e^{rt}$$

где $L_0 = e^C$ - начальное условие.

B.2 Модифицированная модель SIR

Исходная система основана на классической модели SIR (Kermack, McKendrick, 1927) [5] с модификациями:

Для S(t) (истинная информация):

$$\frac{dS}{dt} = \Lambda - \frac{\beta IS}{N} - \mu_S S + \delta R$$

где: - Λ - генерация новой информации - $\frac{\beta IS}{N}$ - заражение истинной информации - $\mu_S S$ - естественное забвение истинной информации - δR - возврат удаленной информации

Для I(t) (ложная информация):

$$\frac{dI}{dt} = \frac{\beta IS}{N} + \gamma I \left(1 - \frac{I}{K} \right) - \mu_I I - \nu I$$

где: - $\frac{\beta IS}{N}$ - заражение от существующей лжи - $\gamma I(1-I/K)$ - автономная репликация с ограничением - $\mu_I I$ - естественное забвение лжи - νI - целенаправленное удаление

Для R(t) (удаленная информация):

$$\frac{dR}{dt} = \mu_S S + \mu_I I + \nu I - \delta R$$

В.3 Упрощение системы

При N=S+I+R=const и L=I/N:

$$\frac{dL}{dt} = \frac{1}{N}\frac{dI}{dt} - \frac{I}{N^2}\frac{dN}{dt}$$

Учитывая $\frac{dN}{dt} = 0$, получаем:

$$\frac{dL}{dt} = \frac{1}{N} \frac{dI}{dt}$$

Подставляя выражение для $\frac{dI}{dt}$ и выражая S=N(1-L)-R, после преобразований получаем финальное уравнение.

В.4 Параметризация моделей

Параметры оценены на основе [1, 2, 8, 6]:

- Статистики Originality.ai (доля ИИ-контента)
- Исследований MIT Technology Review (частота галлюцинаций)
- Данных о циклах обучения моделей от OpenAI
- Научных публикаций по эпидемиологическому моделированию [5]

В.5 Пояснение к формуле из таблицы 1

Формула для доли ИИ-помоев в общем контенте [1, 2]:

$$P_{\text{ИИ-помоев}} = P_{AI} \times P_{false|AI}$$

где: - P_{AI} - доля контента, сгенерированного ИИ (50-60%) - $P_{false|AI}$ - условная вероятность ложной информации при условии, что контент создан ИИ (12-18%)

Данная формула основана на теореме умножения вероятностей для зависимых событий и позволяет оценить общую долю недостоверного ИИ-контента в интернете.