

Фазовые равновесия в системе Li-Yb-O

Работа выполнена в Лаборатории химии бора и гидридов Института общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН)

Подготовила: Степанова Алиса Вячеславовна

10 «Л» СУНЦМГУ

Научный руководитель:

к.х.н, с.н.с. Бузанов Григорий Алексеевич (ИОНХ РАН)

Положение Лантаноидов в ПСХЭ

IUPAC Periodic Table of the Elements

	-																10
1 H hydrogen 1.0080 ±0.0002	2		Key:									13	14	15	16	17	2 He helium 4.0026 ±0.0001
3 Li lithium 6.94 ±0.06	4 Be beryllium 9.0122 ± 0.0001		atomic num Symbo name abridged standa atomic weigh	ber DI ard								5 B boron 10.81 ± 0.02	6 C carbon 12.011 ± 0.002	7 N nitrogen 14.007 ± 0.001	8 O oxygen 15.999 ± 0.001	9 F fluorine 18.998 ± 0.001	10 Ne neon 20.180 ± 0.001
11 Na sodium 22.990 ±0.001	12 Mg magnesium 24.305 ± 0.002	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 26.982 ± 0.001	14 Si silicon 28.085 ± 0.001	15 P phosphorus 30.974 ± 0.001	16 S sulfur 32.06 ± 0.02	17 CI chlorine 35.45 ±0.01	18 Ar argon 39.95 ± 0.16
19 K potassium 39.098 ±0.001	20 Ca calcium 40.078 ± 0.004	21 Sc scandium 44.956 ± 0.001	22 Ti titanium 47.867 ±0.001	23 V vanadium 50.942 ± 0.001	24 Cr chromium 51.996 ± 0.001	25 Mn manganese 54.938 ± 0.001	26 Fe iron 55.845 ± 0.002	27 Co cobalt 58.933 ±0.001	28 Ni nickel 58.693 ± 0.001	29 Cu copper 63.546 ± 0.003	30 Zn zinc 65.38 ± 0.02	31 Ga gallium ^{69.723} ± 0.001	32 Ge germanium 72.630 ± 0.008	33 As arsenic 74.922 ± 0.001	34 Se selenium 78.971 ± 0.008	35 Br bromine 79.904 ± 0.003	36 Kr krypton 83.798 ± 0.002
37 Rb rubidium 85.468 ±0.001	38 Sr strontium 87.62 ± 0.01	39 Y yttrium 88.906 ±0.001	40 Zr zirconium 91.224 ±0.002	41 Nb niobium 92.906 ± 0.001	42 Mo molybdenum 95.95 ± 0.01	43 Tc technetium [97]	44 Ru ruthenium 101.07 ± 0.02	45 Rh rhodium 102.91 ±0.01	46 Pd palladium 106.42 ±0.01	47 Ag silver 107.87 ± 0.01	48 Cd cadmium 112.41 ±0.01	49 In indium 114.82 ± 0.01	50 Sn 118.71 ± 0.01	51 Sb antimony 121.76 ± 0.01	52 Te tellurium 127.60 ± 0.03	53 iodine 126.90 ± 0.01	54 Xe xenon 131.29 ± 0.01
55 Cs caesium 132.91 ± 0.01	56 Ba barium 137.33 ± 0.01	57-71 Ianthanoids	72 Hf hafnium 178.49 ±0.01	73 Ta tantalum 180.95 ± 0.01	74 W tungsten 183.84 ± 0.01	75 Re rhenium 186.21 ±0.01	76 OS osmium 190.23 ± 0.03	77 Ir iridium 192.22 ± 0.01	78 Pt platinum 195.08 ± 0.02	79 Au gold 196.97 ± 0.01	80 Hg 200.59 ± 0.01	81 TI thallium 204.38 ± 0.01	82 Pb lead 207.2 ± 1.1	83 Bi bismuth 208.98 ± 0.01	84 Po polonium [209]	85 At astatine [210]	86 Rn radon [222]
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 HS hassium	109 Mt meitnerium	110 DS darmstadtium	111 Rg roentgenium	112 Cn copernicium	113 Nh nihonium	114 Fl flerovium	115 MC moscovium	116 LV livermorium	117 TS tennessine	118 Og oganesson
[220]	[220]		[207]	1000]	Prool	101	[200]	[w//]	1001]	[mor]	[200]	[=-30]	[mon]	1000]	[230]	[[204]

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

For notes and updates to this table, see www.iupac.org. This version is dated 4 May 2022. Copyright © 2022 IUPAC, the International Union of Pure and Applied Chemistry.

40

 $4f^{X} 5d^{y} 6s^{z}$

Особенности электронного строения атомов лантаноидов

Обобщенная электронная конфигурация лантаноидов: $4f^{x} 5d^{y} 6s^{z}$

	Atom	Ln ³⁺	Ln ⁴⁺	Ln ²⁺	
La	[Xe] 5d ¹ 6s ²	[Xe]			Характерные
Ce	[Xe] 4f ¹ 5d ¹ 6s ²	[Xe] 4f ¹	[Xe]		
Pr	[Xe] 4f ³ 6s ²	[Xe] 4f ²	[Xe] 4f ¹		степени окисления.
Nd	[Xe] 4f ⁴ 6s ²	[Xe] 4f ³	[Xe] 4f ²	[Xe] 4f ⁴	1 - 2+ 1
Pm	[Xe] 4f ⁵ 6s ²	[Xe] 4f ⁴			– Lnº ". BCe Ln
Sm	[Xe] 4f ⁶ 6s ²	[Xe] 4f ⁵		[Xe] 4f ⁶	In ²⁺ Crop E., Trop Ma
Eu	[Xe] 4f ⁷ 6s ²	[Xe] 4f ⁶		[Xe] 4f ⁷	
Gd	[Xe] 4f ⁷ 5d ¹ 6s ²	[Xe] 4f ⁷			-In ⁴⁺ CePrTh
Tb	[Xe] 4f ⁹ 6s ²	[Xe] 4f ⁸	[Xe] 4f ⁷		
Dy	[Xe] 4f ¹⁰ 6s ²	[Xe] 4f ⁹	[Xe] 4f ⁸	[Xe] 4f ¹⁰	
Ho	[Xe] 4f ¹¹ 6s ²	[Xe] 4f ¹⁰			
Er	[Xe] 4f ¹² 6s ²	[Xe] 4f ¹¹			
Tm	[Xe] 4f ¹³ 6s ²	[Xe] 4f ¹²		[Xe] 4f ¹³	
Yb	[Xe] 4f ¹⁴ 6s ²	[Xe] 4f ¹³		[Xe] 4f ¹⁴	Tmf ⁺ Smf ⁺ Yb ⁺ Eu ⁺
Lu	[Xe] 4f ¹⁴ 5d ¹ 6s ²	[Xe] 4f ¹⁴			
Y	[Kr] 4d ¹ 5s ²	[Kr]			Vстойцивость I n ²⁺

c.10. Simon Cotton. Lanthanide and Actinide Chemistry

Синтез низковалентных состояний лантаноидов

Ln₂O₃+H₂ → 2LnO+H₃O -B

- Недостатки способов получения:
- высокая температура, взрывоопасно, высокие требования к материалу сосуда-реактора
- невозможно равномерно смещать прекурсоры, так как тонкоизмельченные порошки трудно изготовить (в чистом виде они не доступны)
- $Ln_2O_3+C \xrightarrow{1300-1400^{\circ}C} 2LnO+CO$
- $2Ln + O_2 \xrightarrow{T} 2LnO$

 $\ln_2 O_3 + \ln \longrightarrow 3 \ln O$

- высокая вероятность образования примесей, высокая температура
- сложно контролировать процесс, требуется высокий вакуум

Цель и актуальность работы

Актуальность работы разработка новых способов восстановления Ln⁺³ в Ln⁺² на примере Yb, который в степени окисления +2 обладает необымными магнитными свойствами и используется в устройствах хранения и обработки информации, люминофорах

Цель работы изучение фазовых равновесий в системе Li-Yb-O

Конкретные задачи работы

- -изучение взаимодействия Li_2CO_3 и Yb₂O₃ в широком диагазоне соотношений Li : Yb
- оптимизация методики синтеза однофазных образцов LiYbO $_2$

- построение концентрационной диаграммы системы Li-Yb-O

-изучение взаимодействия Yb_2O_3 и LiYbO_2 с LiH

4

IЦ МГУ Н. Колмогорова Техника эксперимента: твердофазный синтез

Грекурсоры Li₂CO₃ (99,995%), LiH (98%), Yb₂O₃ (≥99,98%)

Реакционные сосуды алундовые тигли, предварительно прокаленные с Li₂CO₃

Олнтез на воздухе:

Муфельная печь Nabertherm L 5/11

Оинтезвинертной атмосфере:

Воздух, $p(O_2) \approx 0,21$ атм. Аргон в.ч. (марка 5.5), 99.9995% Ar, $p(O_2) \approx 0,0001$ атм.

1 - тройник, 2 -стеклянный кран, 3 - шлифовое соединение в вакуумном исполнении, 4 - кварцевая трубка-реактор, 5 - трубчатая печь сопротивления, 6 - тигель с образцом, 7 - Pt|PtRh термопара, 8 - трехходовой кран, 9 - вакуумные соединительные шланги, 10 - выхлопные склянки Тищенко, 11 - байпас

Техника эксперимента: прекурсоры

Механохимическая активация (МКА)

Вибрационная мельница Rersch MM400 и размольные стаканы к ней Типичные условия активации: 30 мин, 30 Hz, отношение массы шаров к массе обрабатываемой смеси ≈ 20:1

> ΡΦΑ: Bruker D8 ADVANCE (CuK_α) ЦКП ΦΜИ ИОНХ РАН

Элементный анализ (ICP MS): iCAP 6300 Duo АИЦККХИ «РИЕА-Курчатовский институт»

P(O₂) = 0,21 атм. n(Li₂CO₃) : n(Yb₂O₃) = (1-x) : x x = 0.4÷0.9, Δx = 0,1 T = 700-1000 °C, ΔT = 100 °C P(O₂) = 0,0001 атм. T = 650°C

Техника эксперимента

Прекурсоры и синтезированные образцы

Перчаточный бокс СПЕКС ГБ22М Рабочая атмосфера- Ar; $O_2 \le 5$ ppm, $H_2O \le 10$ ppm

Hashimoto, Y., Wakeshima, M., Matsuhira, K., Hinatsu, Y., & Ishii, Y. (2002). Structures and Magnetic Properties of Ternary Lithium Oxides LiRO2(R= Rare Earths). Chemistry of Materials, 14(8), 3245–3251. doi:10.1021/cm010728u

8

Pbnm $(\gamma - \text{LiLnO}_2)$

Рис. 1. Дифрактограммы прекурсоров и образцов системы Li-Yb-O, полученных при отжиге на воздухе (*P*(O₂) = 0,21 атм)

Li : Yb = 1,1 : 1 (*P*(O₂) = 0,21 атм)

Известные препаративные методики получения LiLnO₂

Недостатки методики [*]:

- 1) Использование большого количества дорогостоящего прекурсора лития.
- 2) Многостадийность методики (перетирание и отжиг проводится многократно)
- 3) Загрязнение образца при множественных манипуляциях
- 4) Получение соединений с неизвестным элементным составом (твердые растворы типа Li_{1+x}RO₂)

Неконтролируемое количество

[*] Hashimoto, Y., Wakeshima, M., Matsuhira, K., Hinatsu, Y., & Ishii, Y. (2002). Structures and Magnetic Properties of Ternary Lithium Oxides LiRO2(R= Rare Earths). Chemistry of Materials, 14(8), 3245–3251. doi:10.1021/cm010728u

СУНЦ МГУ Результаты и обсуждение: синтез в инертной атмосфере

Рис. 3. Дифрактограммы прекурсоров и образца системы Li-Yb-O, полученного при отжиге смеси LiH : Yb₂O₃ = 1 : 1 в инертной атмосфере (*P*(O₂) = 0,0001 атм) при 650 °C

Дифрактограмма образца YbO, полученного окислением Yb (*)

*Goto, A., Ohta, Y., Kitayama, M. Solid-State Synthesis of Metastable Ytterbium (II) Oxide. Journal of Materials Science and Chemical Engineering, (2018) 6, 85-99., doi: 10.4236/msce.2018.63007

Концентрационная фазовая диаграмма системы Li-Yb-O

- 1 Li-Yb-Li₂O
- $2 Yb-YbO-Li_2O$
- 3 YbO-LiYbO₂-Li₂O
- $4 \text{Li}_2\text{O}_2 \text{Li} \text{YbO}_2 \text{Li}_2\text{O}$
- 5 YbO-Yb₂O₃-LiYbO₂
- 6 Yb₂O₃-Li₂O₂-LiYbO₂

$$7 - Yb_2O_3 - Li_2O_2 - O_2$$

11

- Исследовано взаимодействие Li₂CO₃ и Yb₂O₃, подвергнутых предварительной МХА, на воздухе (p(O₂) = 0,21 атм) в широком интервале температуры соотношений Li : Yb. Подтверждено существование α-полиморфной модификации LiYbO₂, синтез которой в условиях эксперимента начинается уже при 700 °C (2 ч.)
- 2) Разработана одностадийная методика получения однофазных образцов α-LiYbO₂, которая включает использование не более 10% избытка прекурсора лития через стадию образования механокомпозита
- 3) Изучено взаимодействие LiHи Yb₂O₃, подвергнутых предварительной МХА, в инертной атмосфере с (p(O₂) = 0,0001 атм.
- 4) Построена концентрационная диаграмма системы Li-Yb-O, демонстрирующая фазовые равновесия с участием кристаллических фаз, существование которых достоверно подтверждено

Список литературы

- 1. Simon Cotton. Lanthanide and Actinide Chemistry. Uppingham School, Uppingham, Rutland, UK. QD172.R2C68 2006 p. 9–22
- 2. Батырева В.А., Козик В.В., Серебренников В.В., Якунина Г. М. Синтезы соединений редкоземельных элементов. Томск; Изд-во Томск, ун-та, 1983, '— 3,75 л.—1 р.
- 3. M. Johnson-Groh Scilight. Ytterbium monoxide epitaxial thin films exhibit high electron mobility. 2019, Art. Nº170004. 2019. https://doi.org/10.1063/1.5102136
- 4. T. Yamamoto, K. Kaminaga, D. Saito, D. Oka, T. Fukumura. High electron mobility with significant spin-orbit coupling in rock-salt YbO epitaxial thin film. Applied Physics Letters. 2019. <u>https://doi.org/10.1063/1.5085938</u>.
- 5. Hashimoto, Y., Wakeshima, M., Matsuhira, K., Hinatsu, Y., & Ishii, Y. (2002). Structures and Magnetic Properties of Ternary Lithium Oxides LiRO2(R= Rare Earths). Chemistry of Materials, 14(8), 3245–3251. doi:10.1021/cm010728u
- 6. Goto, A., Ohta, Y., Kitayama, M. Solid-State Synthesis of Metastable Ytterbium (II) Oxide. Journal of Materials Science and Chemical Engineering, (2018) 6, 85–99., doi: 10.4236/msce.2018.63007

Спасибо за внимание!