Синтез упорядоченного мезопористого алюмосиликата структурного типа МСМ-41

Выполнила: Цышко Татьяна Александровна, 11Х

Научный руководитель: к.х.н. Вутолкина Анна Викторовна, МГУ им. М. В. Ломоносова, химический факультет 2025 г.

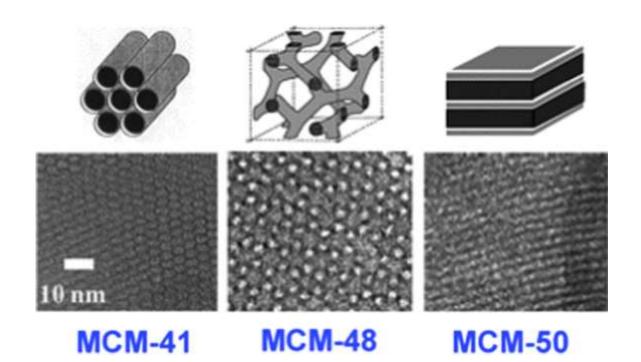
Задачи:

- 1) Выбрать подходящую методику синтеза мезопористых алюмосиликатов
- 2) Рассчитать количество реактивов, подготовить необходимую посуду и вещества
- 3) Произвести синтез согласно методике
- 4) Произвести анализ полученного вещества
- 5) Сделать выводы о свойствах полученных алюмосиликатов на основе данных методов физического анализа

Цели и задачи

Цель работы - провести синтез упорядоченных мезопористых алюмосиликатов

Актуальность работы


Мезопористые алюмосиликаты имеют широкую область применения:

- 1. Катализаторы в нефтехимической промышленности и органическом синтезе
- 2. Селективное поглощение частиц определенного размера в газовой смеси
- 3. Адсорбция примесей токсичных металлов в водных растворов

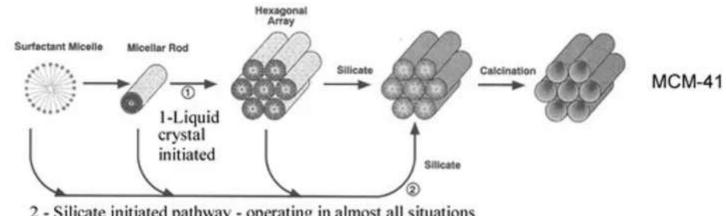
Цеолиты и мезопористые силикаты активно используются в крекинге, при реакциях гидрирования, изомеризации, алкилирования.

Главные преимущества таких катализаторов - селективность, безопасность, экологичность.

Al-MCM-41

Структура MCM-41 (Mobil Composition of Matter No. 41), напоминает пчелиные соты.

Мезопористые алюмосиликаты со структурой МСМ-41 обладают четко выраженной симметрией, регулируемости диаметра пор, большой площадью поверхности и большим объемом пор.


Как происходит синтез?

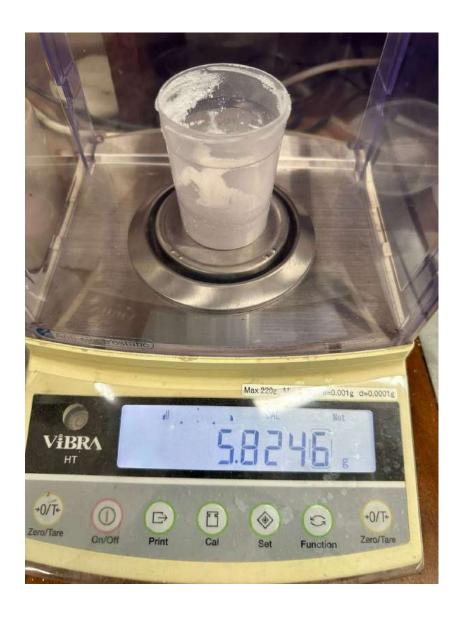
Главная особенность Al-МСМ-41 заключается в строении его пор и каналов

Для того, чтобы сформировать структуру "пчелиных сот", используется темплатный метод, суть которого заключается в применении мицелл различных ПАВ для формирования "шаблона".

На цилиндрических мицеллах ПАВ происходит самоорганизованная сборка-конденсация силикатного каркаса и последующее встраивание в него алюминия из добавленных в раствор кремний- и алюминий-содержащих соединений.

ПАВ удаляют из каркаса, образованного SiO2/Al2O3, прокаливанием на воздухе при высокой температуре.

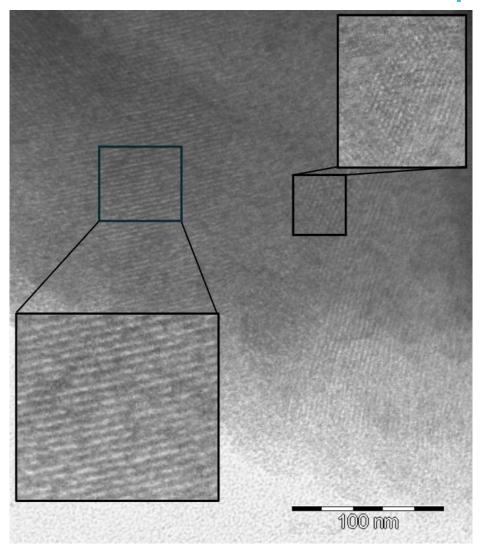
2 - Silicate initiated pathway - operating in almost all situations

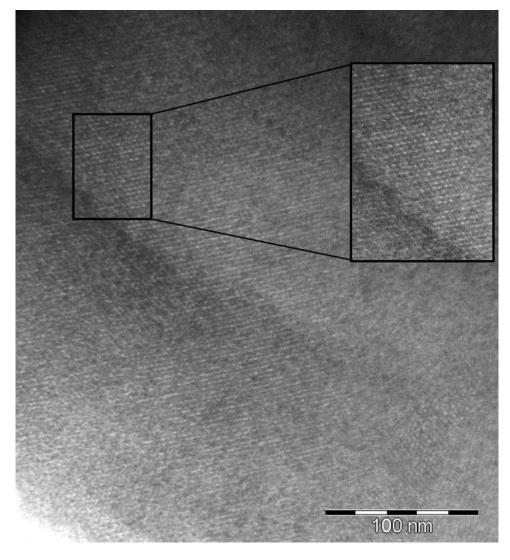

Ход работы

- 1) Приготовление раствора цетилтриметиламмоний бромида (СТАВ) в смеси воды и изопропилового спирта
- 2) Добавление изопропоксида алюминия в качестве источника алюминия
- 3) Добавление тетраэтоксисилана в качестве источника кремния

Ход работы

- 4) Стабилизация рН раствора конц. раствором аммиака (рН=11)
- 5) Формирование структуры в течение 24 часов при комнатной температуре
- 6) Промывание и вакуумное фильтрование полученного вещества.



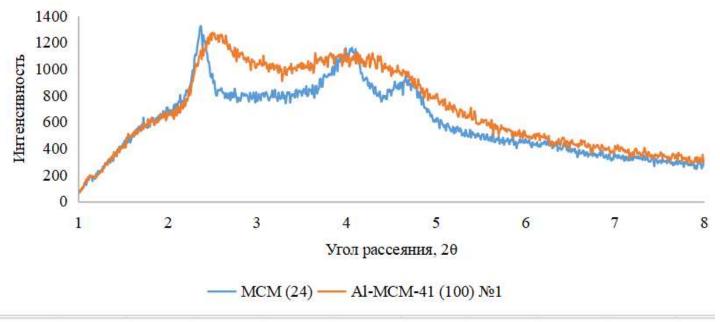


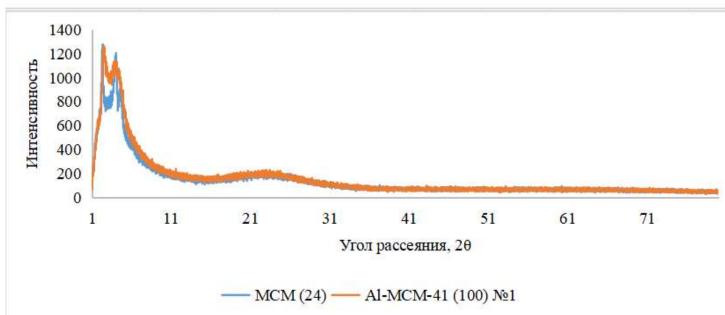
Ход работы

- 7) сушка порошка массой 73,8 г в сушильном шкафу при t = 70-100°C
- 8) прокаливание в муфельной печи при t = 540 °C
- 9) взвешивание сухого продукта

Просвечивающая электронная микроскопия

Выводы

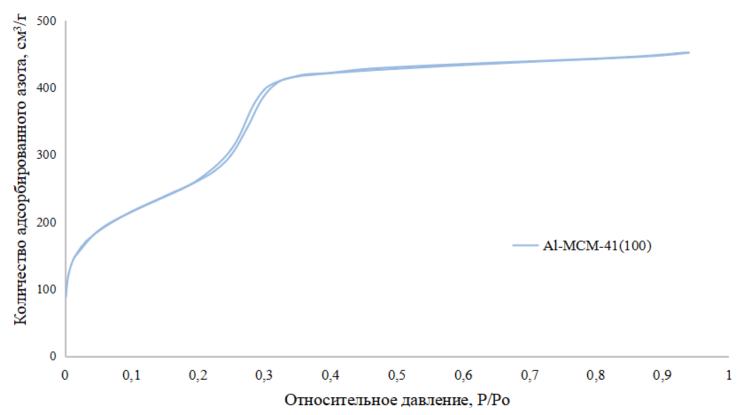

В ходе работы был успешно проведен синтез мезопористых алюмосиликатов Al-MCM-41.


Результаты физико-химических исследований подтвердили, что полученный материал обладает структурными и функциональными характеристиками, необходимыми для его использования в качестве компонента катализатора в процессах нефтепереработки и нефтехимического синтеза.

Высокая удельная поверхность, упорядоченная мезопористая структура и регулируемая кислотность делают Al-MCM-41 перспективным материалом для промышленного применения в каталитических процессах

Список литературы

- •Suyanta, Naristo, Endang Tri Wahyuni, Triyono, Universitas Gadjah Mada, SYNTHESIS AND CHARACTERIZATION OF MESOPOROUS ALUMINOSILICATES AI-MCM41 AND INVESTIGATION OF ITS THERMAL, HYDROTHERMAL AND ACIDITY STABILITY // Indonesian Journal of Chemistry. 2010. Vol 10, No 1, P. 41-45
- •V. Meynen, P. Cool, E. F. Vansant, Laboratory of Adsorption and Catalysis, University of Antwerpen, Verified syntheses of mesoporous materials // Microporous and Mesoporous Materials. 2009. Vol. 125, Issue 3, P. 170-223
- •Xiu-Wen Wu, Hong-Wen Ma, Jin-Hong Li, Jun Zhang, Zhi-Hong Li, China University of Geosciences, The synthesis of mesoporous aluminosilicate using microcline for adsorption of mercury(II) // Journal of Colloid and Interface Science. 2007. Vol. 315, Issue 2, P. 555-561
- •Карпов С.И., Roessner F., Селеменев В.Ф., Гульбин С.С., Беланова Н.А., Бородина Е.В., Корабельникова Е.О., Крижановская О.О., Недосекина И.В., Воронежский государственный университет, Перспективы синтеза и использования упорядоченных мезопористых материалов при сорбционно-хроматографическом анализе, разделении и концентрировании физиологически активных веществ (обзор) // Сорбционные и хроматографические процессы. 2013. Том 3, № 2, с. 125-140

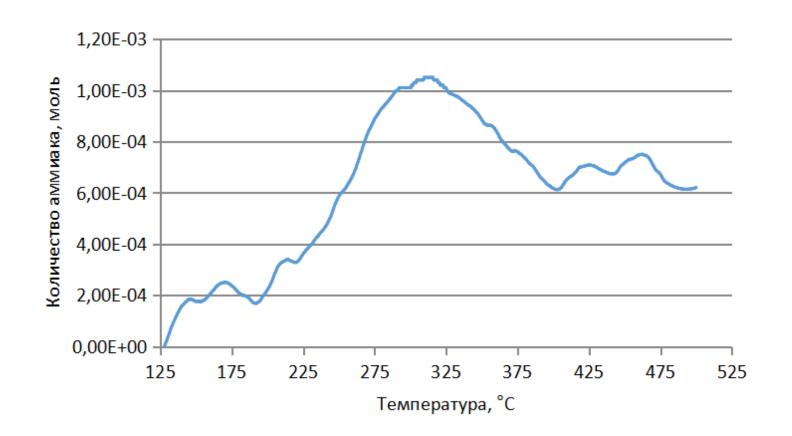


Рентгенофазовый анализ на малых углах

На рентгенограмме образца наблюдался интенсивный рефлекс в области малых углов $2\theta \approx 2,54^{\circ}-4,06^{\circ}$, что свидетельствует об образовании мезопористой структуры с высокой степенью упорядоченности. По сравнению с чистым силикатом положение рефлексов сохраняется, что подтверждает неизменность структуры после введения алюминия, однако присутствует рост интенсивности рефлексов у алюмосиликата, что указывает на возможное улучшение структурного порядка.


Изотерма адсорбции/десорбции азота

Адсорбция азота


Была рассчитана удельная площадь поверхности методом Брунауэра-Эммета-Теллера: SBET = 1066 м2/г. Исходя из полученного значения можно сделать вывод, что материал обладает большой удельной площадью поверхности

Распределение пор по размерам по кривой десорбции ВЈН

Адсорбция азота

Был рассчитан объем пор по методу ВЈН, объем пор при адсорбции равен 0,71 см3/г, при десорбции - 0,72 см3/г. По распределению пор по размерам по кривой десорбции ВЈН был определен диаметр пор, он составил 2 нм. По результатам исследований можно утверждать, что полученный материал является мезопористым алюмосиликатом.

Адсорбция аммиака

Была вычислена кислотность, равная 154 мкмоль/г, что говорит о том, что полученный материал можно использовать в качестве кислоты Льюиса.