ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ И НАУКИ ГОРОДА МОСКВЫ Центральный административный округ

Государственное бюджетное общеобразовательное учреждение города Москвы "Школа № 171"

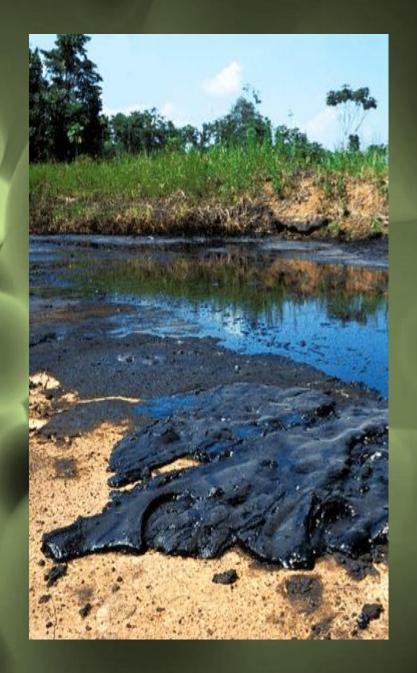
Сравнительная эффективность биодеструкторов углеводородов по совокупности факторов оздоровления экосистем

Выполнила:

Лилия Александровна Журавлева, ученица 10 биокласса

Научный руководитель:

Дарья Александровна Плахина преподаватель биологии


Москва, 2019

Постановка проблемы:

К приоритетным загрязнителям биосферы относятся нефть и нефтепродукты. Основными причинами загрязнения нефтью и нефтепродуктами являются: аварии при транспортировке нефти и нефтепродуктов, выбросы нефти на буровых скважинах, отходы нефтеочистительных заводов, операции по обслуживанию транспорта, промышленные отходы нефтеперерабатывающих предприятий, системы отопления, работающие на нефтепродуктах (НП) и другие.

На сегодняшний день мировая практика располагает огромным количеством разнообразных биопрепаратов для очистки и рекультивации загрязненных нефтью или нефтепродуктами объектов. Основным направлением исследований в этом направлении является изучение эффективности биопрепаратов для различных условий среды.

Важнейшей задачей является возвращение экосистемы в состояние, пригодное для жизни млекопитающих.

Гипотеза:

Микроорганизмы, входящие в консорциумы биопрепаратов включают, в том числе условно патогенные формы. Кроме того, продукты промежуточных реакций биохимического процесса окисления УВ (спирты, фенолы и т.п.)могут также представлять опасность для экосистемы.

Для разных консорциумов негативное воздействие будет разным.

Выбор биопрепаратов для очистки и рекультивации загрязненных нефтью объектов с учетом их способности к восстановлению экосистемы в целом позволит сохранять естественные ландшафты.

<u>Цель:</u>

Рейтингование биопрепаратов для очистки и рекультивации загрязненных нефтью объектов по их способности к восстановлению экосистемы в состояние, пригодное для жизни млекопитающих.

Задачи:

- 1. Подготовить модели экосистемы леса, с последующей имитацией углеводородного загрязнения.
- 2. Выбрать показательные в плане здоровья экосистемы параметры и провести наблюдения в течение срока, двукратно превышающего средний для биопрепаратов период очистки.
- 3. Определить для каждого препарата степень воздействия углеводородов и продуктов их разрушения при условии проведения мероприятий по очистке и рекультивации загрязненных нефтью экосистем на основании данных, полученных опытным путем и выполнить их рейтингование.

Экологические риски:

Использование нефтеокисляющих микроорганизмов для очистки окружающей среды является не новой, но недостаточно изученной областью исследований. Продолжается поиск новых деструкторов углеводородов нефти и выявление оптимальных условий эффективного использования имеющихся препаратов.

Экологические риски безответственного применения биопрепаратов для очистки и рекультивации загрязненных нефтью объектов очень разнообразны: от опасностей, которым подвергаются растения, до рисков млекопитающим. Они связаны как с деятельностью самих микроорганизмов, входящих в консорциумы биопрепаратов, так и с воздействием на компоненты экосистемы веществ, являющихся промежуточными продуктами биохимической цепочки реакций.

МАТЕРИАЛЫ и МЕТОДЫ

Современный микробиологический метод рекультивации, основанный на применении высокоэффективных штаммов УОМ, выделенных из загрязненных природных объектов, широко применяется в мировой практике рекультивационных мероприятий.

Большое значение для жизнедеятельности нефтеокисляющих микроорганизмов имеют почвенно-климатические условия и состав углеводородов, попавшых в почву (или другую среду), и время, прошедшее с момента загрязнения. Различные фракции нефтепродуктов, их сочетания по-разному влияют на микроорганизмы, в том числе внесенные с биопрепаратами. Это вызвано возможностью использования различных углеводородов как источника энергии у данных микроорганизмов и определяется их физиолого-биохимическими особенностями, способностью разрушать тяжелые или легкие фракции углеводородного сырья.

Применение каждого биопрепарата, имеющего в своем составе активные формы микроорганизмов, требует создания оригинальной технологии и строгого ее выполнения в процессе использования препарата. Для каждой почвенно-климатической зоны технология должна корректироваться.

Для целей исследований было привлечено более 50 источников: статей в научных журналах, монографий, методических руководств и справочных изданий.

В 11 контейнеров в качестве загрязняющего агента была внесена смесь из равных частей бензина и дизельного топлива. 10 контейнеров, вмещающих загрязненные модели, были обработаны биопрепаратами. Т.о. наблюдения изменений параметров среды и состояния организмов для двух контрольных контейнеров отражают ситуацию отсутствия загрязнения и ситуацию, когда загрязнение произошло, но меры по рекультивации не принимались.

Опыт был поставлен на среднем уровне углеводородного загрязнения. Обработка каждого образца проводилась в соответствии с рекомендованной разработчиком технологией. Контейнеры с образцами в течение опыта находились при температуре 18-20 °C.

По ходу эксперимента раз в неделю проводилось увлажнение путем дождевания и рыхления торфяника, внесение минеральных удобрений, мела и оструктуривателя произведено через 7 недель от начала опыта.

В качестве модельных растений для определения скорости вегетации и выявления заболеваний были выбраны наиболее распространенные травянистые растения лесов Подмосковья:

1. Мятлик луговой - (лат. Роа рraténsis) — многолетнее растение; вид рода Мятлик (Роа) семейства Злаки (Роасеае).

- 2. Живучка ползучая (лат. Ajúga réptans) вид многолетних травянистых растений из рода Живучка семейства Яснотковые (Lamiaceae).
- 3. Земляника лесная (лат. Fragária vésca) вид растений рода Земляника семейства Розовые.
- 4. Звездчатка средняя (лат. Stellária média) вид растений рода Звездчатка (Stellaria) семейства Гвоздичные (Caryophyllaceae).

В качестве модельного млекопитающего выбраны мыши лабораторные разноокрашенные. Для кормления использовалась смесь злаков, морковь, вода. Содержание нефтепродуктов в торфе определяли методом ИК-спектрометрии на приборе АН-2 (анализатор нефтепродуктов) в соответствии с РД 390147098-015-90 Инструкции по контролю за состоянием почв на объектах предприятий Миннефтегазпрома; использовали ГОСТ-Р, разработанный ВНИГРИ Определение содержания нефтепродуктов в почвах и грунтах.

Для оценки влияния биопрепаратов на биологическую активность почвы на последнем этапе испытаний отбирались образцы почв для микробиологических исследований. Для выполнения исследования был использован микроскоп Advanced Monocular Research Microscope RMH-4, произведенный Radical Scientific Equipments Pvt Ltd (Индия). Микроскоп бинокулярный RMH-4 рекомендован для линических исследований в медицине и биологии, предназначен для исследований препаратов в проходящем свете, в светлом

поле.

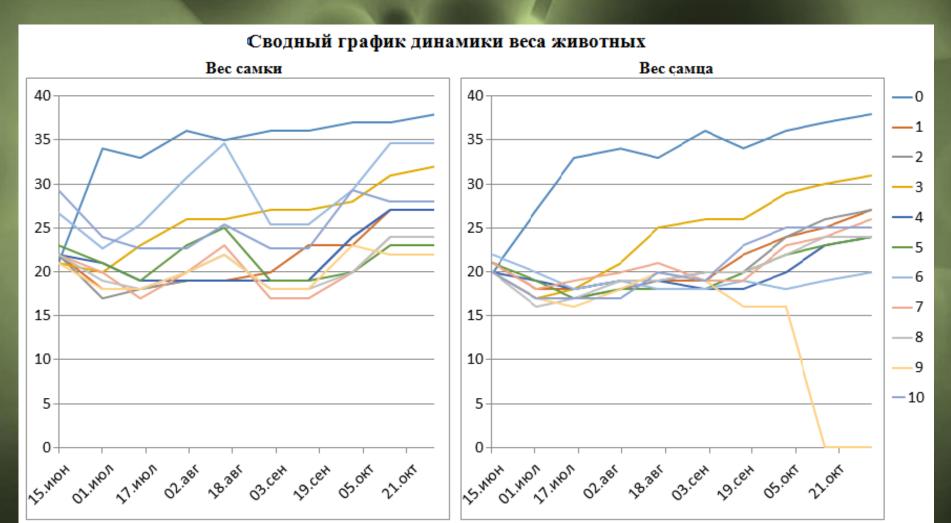
МАТЕРИАЛЫ и МЕТОДЫ

Для оценки кислотности почв были использованы стандартные тест-полоски (лакмус)

Пробы почв отбирались с поверхности и с глубины 10 см из 15 точек. В соответствии с инструкцией производителя, для каждого образца была взята навеска 5 г, помещена в фильтровальную бумагу, затем погружена в стакан с 10 мл дистиллированной воды. Через час кислотность раствора определяли использованием тест-полосок и сопоставлением результата с контрольной палеткой.

ПЛАН ЭКСПЕРИМЕНТА:

- 1. Создать 12 моделей экосистем леса;
- 2. Имитировать загрязнение экосистемы углеводородами;
- 3. Применить биопрепараты утилизаторы УВзагрязнения;
- 4. Заселить модельных млекопитающих;
- 5. Выполнить мониторинг в объеме:
 - визуального наблюдения за жизнедеятельностью модельных млекопитающих, их размножением и динамикой их массы и состоянием растительных сообществ,
 - ИК-спектрометрии почвы;
 - микроскопических исследований почвенных структур;
 - определении кислотности почв.
- 6. Выполнить анализ полученных данных;
- 7. Рейтинговать биопрепараты, включенные в исследования, по их безопасности и эффективности;
- 8. Ознакомить службы экологии основных нефтяных компаний с результатами исследования для учета при выборе природоохранных мероприятий.


БИОПРЕПАРАТЫ, УЧАСТВУЮЩИЕ В ИССЛЕДОВАНИИ

В каждый из 10 остальных контейнеров были внесены биопрепараты, в количествах и по методикам, описанных производителем.

- 1. Rhodococcus erythropolisPK-16, Arthrobacter sp.HK-15, Candida lipolyticaKПБ-3308, Candida guillirmondii KПБ-3175, Pichiaguillirmondii KПБ-3205, Fusarium moniliformeSheld., Gliocladium deliquescensSopp., кроме того препарат содержит сорбонафт.
- 2. Arthrobacter, Bacillus, Candida, Desulfovibrio, Pseudomonas
- 3. Mycobacterium, Pseudomonasu Rhodococcus, кроме того: 0,05-1,0% аммония щавелевокислого и 1,0-1,5% нормальных парафинов, что обеспечивает поддержание высокого титра и углеводородокисляющей активности
- 4. Rhodococcus sp., выделенный из нефтезагрязненных почв Усинского и Возейского месторождений Республики Коми
- 5. Pseudomonas fluorescens на сфанговом торфе, способствующий очищению окружающей среды от нефтепродуктов, ПАВ, пестицидов и др., стимулирующий рост растений и обладающий антагонистической активностью
- 6.Rhodococcus ruber и Rhodococcus erythropolis
- 7. Mycobacterium flavescens, Pseudomonas putida, Acinetobacter sp., иммобилизованных на торфе.
- 8. Acinetobacter olevorum, Candida maltosa
- 9. Acinetobacter calcoaceticus и Ochrobactrum intermedium, которые способны к деструкции нефтепродуктов до конечных соединений углекислого газа и воды. Штамм Acinetobacter calcoaceticus обладает поверхностно- активными свойствами, а штамм Ochrobactrum intermedium способностью к фиксации атмосферного азота.
- 10. Bacillus sp.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Полученные результаты позволяют подготовить графики динамики веса модельных млекопитающих и выполнить рейтингование наиболее широко применяемых в России биопрепаратов-деструкторов УВ.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

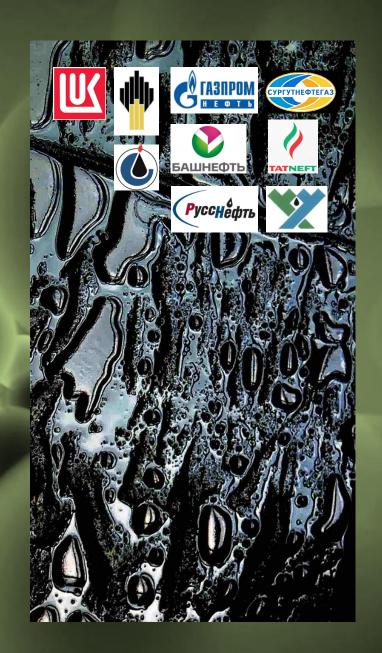
Выполняя рейтингование мы рассматривали весомость каждого их показателей в аспекте выживания популяции. Так, неоднократно съеденный приплод был расценен, как более негативный факт, чем ущерб, нанесенный здоровью взрослых особей, но не приведший к отсутствию потомства.

Очевидно, что особо внимательным должен быть выбор биопрепарата в случае необходимости рекультивации территорий с высокой заселенностью, интенсивного сельского хозяйства, а так же территорий расселения и произрастания редких и краснокнижных видов.

Рейтингование

Кон	Восстановлен	Рост стебля,	Macca	Macca	Наличие	Масса взрослых	Число	Среднее число	Macca	Наличие	Общий рейтинг
тей- нер	ие структуры почв, дней /*	% от контр. /*	надземной части, % от	подземной части, % от	заболеваний растений/*	особей, % от контр./*	приплодов/*	достигших 3 нед./*	достигших 3 нед., % от	заболеваний животных/*	
•			контр./*	контр. /*	•	•			контр. /*		
1.	135/10	71/7	83/9	85/9	Фузариоз на	71/9	3/10	15/10	15/8	Приплод съеден,	4 (75)
					звездчатке/0					локально	
										облысение./3	
2.	135/10	73/9	81/8	80/5	-/10	71/9	2/9	6/7	14/7	Тошнота, диарея.	3 (78)
										Восполение глаз./4	
3.	135/10	90/10	95/10	92/10	-/10	83/10	3/10	13/9	12/6	-/10	1 (95)
4.	135/10	67/4	80/7	83/8	-/10	67/8	2/9	8/8	14/7	-/10	2 (81)
5.	135/10	70/6	76/6	80/4	-/10	62/6	3/10	2/4	15/8	-/10	5 (74)
6.	135/10	69/5	75/5	81/6	-/10	61/5	2/9	4/5	12/6	-/10	6 (71)
7.	135/10	70/6	81/8	78/2	-/10	65/7	2/9	5/6	16/9	Самопроизвольный	7 (69)
										аборт/2	
8.	135/10	71/7	74/4	82/7	-/10	58/3	2/9	1/3	18/10	Самопроизвольный	8 (65)
										аборт/2	
9.	135/10	72/8	76/6	79/3	-/10	57/2	1/8	-/0	-/0	Самец погиб/0	10 (47)
10.	135/10	70/6	70/3	81/6	-/10	60/4	1/8	-/0	-/0	Активность низкая,	9 (48)
										тремор, шерсть	
		-		14 y == ==						тусклая,	
		110	es new Kolf + a	TAAFF						клочковатая/1	

^{*} Значение после «/» указывает рейтинг препарата по параметру.


ПРОЕКТНЫЕ РЕКОМЕНДАЦИИ

Результаты исследований были разосланы в компании, являющиеся заказчиками работ по очистке и рекультивации загрязненных нефтью объектов, а также будут докладываться на ряде открытых площадок, как юношеская научная конференция «Мы и Биосфера» и др.

Рекомендовано:

Провести комплексные исследования биопрепаратов в объемах, которые позволят применить статистические методы обработки результатов.

При планировании мероприятий по рекультивации учитывать риски для каждого компонента экосистемы.

ВЫВОДЫ

Внесение УОМ позволяет снизить содержание углеводородов во всех компонентах экосистемы, способствует повышению микробиологической активности и уменьшению фитотоксичности субстрата в разной степени, что связано с консорциумом организмов, включенным в конкретный биопрепарат, а также с составом вспомогательных компонентов.

Установлено, что внесение биопрепаратов стимулирует биологическую активность почв и активизирует процесс нефтедеструкции.

Максимальное увеличение скорости деструкции нефти в почвах отмечено при использовании биопрепарата на основе Mycobacterium, Pseudomonasu Rhodococcus, 0,05-1,0% аммония щавелевокислого и 1,0-1,5% нормальных парафинов.

Наиболее безопасным для экосистемы показал себя препарат на основе консорциума Rhodococcus erythropolisPK-16, Arthrobacter sp.HK-15, Candida lipolyticaKПБ-3308, Candida guillirmondii КПБ-3175, Pichiaguillirmondii КПБ-3205, Fusarium moniliformeSheld., Gliocladium deliquescensSopp.

Основным фактором, понижающим степень достоверности исследования является малое количество образцов, что делает значимой погрешность связанную с индивидуальными особенностями модельных организмов.

ЗАКЛЮЧЕНИЕ

Сравнительная оценка эффективности испытанных препаратов позволила выделить препараты, обладающие наибольшей способностью к окислению нефтепродуктов. Наивысшей активностью деструкции нефти обладал препарат нафтокс, способность которого к интенсивному разрушению высоких концентраций нефти связана с физиологическими и биохимическими особенностями слагающих его микроорганизмов.

Биопрепарат, содержащий штаммы микроорганизмов: Mycobacterium, Pseudomonasu Rhodococcus, кроме того: 0,05-1,0% аммония щавелевокислого и 1,0-1,5% нормальных парафинов, что обеспечивает поддержание высокого титра и углеводородокисляющей активности;

Биопрепарат, содержащий штаммы микроорганизмов: препарат на основе штамма Rhodococcus sp., выделе<mark>нного</mark> из нефтезагрязненных почв Усинского и Возейского месторождений Республики Коми

Биопрепарат, содержащий штаммы микроорганизмов: Arthrobacter, Bacillus, Candida, Desulfovibrio, Pseudomonas показали себя, как наиболее эффективные и безопасные и заняли рейтинги

соответственно 1, 2 и 3.


Работа направлена для учета при принятии решений по выбору бактериальных препаратов в основные нефтегазодобывающие компании России (Приложение 6). Для подтверждения полученных результатов необходимо провести исследования по изучению способности биопрепаратов к деструкции углеводородов нефти на различных нефтяных загрязнениях в реальных условиях.

БЛАГОДАРНОСТИ

Автор выражает глубокую признательность за идейное вдохновение, постоянное внимание и неоценимую помощь своему научному руководителю преподавателю биологии ГБОУ СОШ №171 Дарье Александровне Плахиной.

Особую признательность автор выражает преподавателю биологии ГБОУ СОШ №171, эксперту ЕГЭ Жигановой Ларисе Петровне за ценные советы и научно-методическое руководство при постановке экспериментов и обработке полученных результатов

Автор искренне благодарит к.г.-м.н. Т.А.Журавлеву и к.г.н. А.Б.Журавлева за поддержку при выполнении работы.

Спасибо за внимание!